MATH 248 FALL 2017 - LABORATORY ASSIGNMENT 3 - Sochacki
DUE: Tuesday October 17, 2017
POINTS: 50

1. Give the Maclaurin polynomial for cosine. Use this polynomial to give (a) $\cos (1)$ and (b) $\cos (100)$ accurate to five decimal places. (4 points)
2. Give the Taylor polynomial for $\ln (x)$. Use this polynomial to give (a) $\ln (0.1)$
(b) $\ln (0.1)$ and (c) $\ln (2)$ accurate to three decimal places. (4 points)
3. Let $p(x)=2 x^{8}-3 x^{5}+2 x^{4}-3 x^{3}+2 x-1$. Give the following (a) $p(0)$ (b) $p^{\prime}(0)$
(c) $p^{2 "(0)}$ (d) $p^{(6)}(0)$ (e) $p^{(8)}(0)$ (f) $p^{(9)}(0)$. (6 points)
4. Let $f(x)=\sum_{k=0}^{\infty} \frac{x^{2 k}}{2^{k}}$. Give the following (a) the interval of convergence (b) $f(0)$ (c) $f^{\prime}(0)(\mathrm{d}) f^{(6)}(0)(\mathrm{e}) f^{(9)}(0) \cdot(5$ points $)$

You are to write a Matlab script that will
I. use an appropriate Taylor (Maclaurin) polynomial and the properties of the sine function to give an accurate approximation to $\sin (\mathrm{x})$. (10 points)
II. use a Newton Divided Difference polynomial based on ten data points given by your Taylor polynomial on the interval $[0,2 \pi]$ to approximate $\sin (\mathrm{x})$. (10 points)

Output:
(1) Give a nice table output showing your ten data values of $\sin (x)$ that will be used in your Newton Divided Difference polynomial. (3 points)
(2) Print out a nice table showing ten interesting values for the interval [$2 \pi, 6 \pi$] for both your Taylor and your Newton polynomial. (3 points)

The remaining 5 points will be based on the 'professionalism' of your work.

