Presentation Problems 4

1. In this problem, you will study the function $y=f(x)=\ln (x+1)$ through its power series. Give (a) the interval of convergence of the power series for $y(b)$ the values of the derivatives of y at $x=0$ (c) the power series for $w=\frac{f(x)-f(0)}{x}$ and its interval of convergence (d) a comparison of the power series for y and w. Can you give a series for $\ln 2$ from (a)-(d)?
2. In this problem, you will study the function $y=f(x)=\ln (1-x)$ through its power series. Give (a) the interval of convergence of the power series for $y(b)$ the values of the derivatives of y at $x=0$ (c) the power series for $w=\frac{f(x)-f(0)}{x}$ and its interval of convergence (d) a comparison of the power series for y and w. Can you give a series for $\ln 2$ from (a)-(d)?
3. In this problem, you will study the function $y=f(x)=\arctan (\mathrm{x})$ through its power series. Give (a) the interval of convergence of the power series for $y(b)$ the values of the derivatives of y at $x=0$ (c) the power series for $w=\frac{f(x)-f(0)}{x}$ and its interval of convergence (d) a comparison of the power series for y and w. Can you give a series for π from (a)-(d)?
4. In this problem, you will study the function $y=f(x)=e^{x}$ through its power series. Give (a) the interval of convergence of the power series for $y(b)$ the values of the derivatives of y at $x=0$ (c) the power series for $w=\frac{f(x)-f(0)}{x}$ and its interval of convergence (d) a comparison of the power series for y and w. Can you give a series for e from (a)-(d)?

Please use the ratio test and L'Hospital's rule. Also, give patterns that arise in your power series and the derivatives at $x=0$.

