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The Taylor Method

We want to solve y′(t) = f(t, y(t)), y(0) = α.
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The Taylor method is the first taught in a numerical ode class. But even
simple right hand sides require lots of work, so Runge-Kutta, multistep etc.
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Taylor Method Example

Van der Pol equation: x′ = y, y′ = −x + y − x2y, x(0) = x0, y0 = y0.
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Taylor Method Example

Van der Pol equation: x′ = y, y′ = −x + y − x2y, x(0) = x0, y0 = y0.

x′′ =
d

dt
(y) = −x + y − x2y,

y′′ =
d

dt

(

−x + y − x2y
)

= −x′ + y′
− 2xx′y − x2y′

= −y − x + y − x2y − 2xy2
− x2(−x + y − x2y)

= −x − 2xy2
− 2x2y + x3 + x4y,

x′′′ =
d

dt

(

−x + y − x2y
)

= −x − 2xy2
− 2x2y + x3 + x4y,

y′′′ =
d

dt

(

−x − 2xy2
− 2x2y + x3 + x4y

)

= · · ·

= −y − 2y3
− 8xy2 + 5x2y + 2x3 + 8x3y2 + 3x4y − x5

− x6y.
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(

−x + y − x2y
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= −x − 2xy2
− 2x2y + x3 + x4y,

y′′′ =
d

dt

(

−x − 2xy2
− 2x2y + x3 + x4y

)

= · · ·

= −y − 2y3
− 8xy2 + 5x2y + 2x3 + 8x3y2 + 3x4y − x5

− x6y.

Ouch! And don’t even think about x′ = cos
(

1 + e3 sin x
)

.
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Another Ode Solution Technique

A first course in differential equations introduces a power series
substitution method for second order linear differential equations of the
from p(x)y′′ + q(x)y′ + r(x)y = f(x), as long as p, q, r, f are sufficiently
simple.
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Another Ode Solution Technique

A first course in differential equations introduces a power series
substitution method for second order linear differential equations of the
from p(x)y′′ + q(x)y′ + r(x)y = f(x), as long as p, q, r, f are sufficiently
simple.

The method of Frobenius multiplies each power series by xr to deal with
expansions around regular singular points (e.g. Bessel’s odes).

Almost never seen again, especially when an ode is nonlinear. But, there
is no reason why it can’t be applied to other odes...
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Back to Van der Pol

x′ = y, y′ = −x + y − x2y, x(0) = x0, y(0) = y0.
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∞
∑

i=0
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∑

i=0
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i.
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y′ = −x + y − x2y becomes
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,

and equate coefficients.
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Even Better Van der Pol

Let u = x2, then x′ = y, y′ = −x + y − uy, x(0) = x0, y(0) = y0, u(0) = x2
0.
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The Power Series Method

Given a system of (autonomous) odes with the right hand side
polynomial in the unknowns, shift so expanding around zero.
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The Power Series Method

Given a system of (autonomous) odes with the right hand side
polynomial in the unknowns, shift so expanding around zero.

Identify intermediate variables (as quadratics) that make the right
hand side quadratic in all variables.

For i from 1 to n, (i) find ith components of dependent variables in
terms of i − 1th components (linear terms) or all previous terms
(quadratic via Cauchy Product), (ii) find ith components of
intermediate variables.
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The Power Series Method

Given a system of (autonomous) odes with the right hand side
polynomial in the unknowns, shift so expanding around zero.

Identify intermediate variables (as quadratics) that make the right
hand side quadratic in all variables.

For i from 1 to n, (i) find ith components of dependent variables in
terms of i − 1th components (linear terms) or all previous terms
(quadratic via Cauchy Product), (ii) find ith components of
intermediate variables.

With an appropriate stepsize, update variable values and continue.

Great for polynomial right hand side, but isn’t that a major restriction?
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A Bold Claim

Any system of odes with analytic solutions, or analytic functions that
can be represented as solutions of odes, can be reformulated in
polynomial form – mostly as y′ = f(t, y), sometimes as zy′ = f(t, y)

where z is a vector of ones or t’s (regular singular points).
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A Bold Claim

Any system of odes with analytic solutions, or analytic functions that
can be represented as solutions of odes, can be reformulated in
polynomial form – mostly as y′ = f(t, y), sometimes as zy′ = f(t, y)

where z is a vector of ones or t’s (regular singular points).

A systematic approach can be applied to make the conversion to
polynomial form, and identify intermediate variables.
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Advantages

Arbitrary order available at every step when numerical solving the
system of odes.
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Advantages

Arbitrary order available at every step when numerical solving the
system of odes.

Fast – no transcendental function evaluation, just multiplication &
addition.

An a priori error estimate is available (Paul Warne & Roger Thelwell).

Applicable beyond odes (Jim Sochacki)

Solution available between mesh points (useful for delay odes, finding
zeros etc).

Parallelizable (Dave Pruett, Bill Ingham).

Can generalize to rational function rhs (Joe Rudmin, Paul Warne).

Extensive theoretical background (Ed Parker, Dave Carothers).
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Simple Examples

If y = et, then y′ = y with y(0) = 1.
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If y′ = sin t, let z = sin t and w = cos t, then y′ = z, z′ = w and w′ = −z.

If y′ = sin y, let z = sin y and w = cos y, then y′ = z, z′ = cos(y)y′ = wz

and w′ = − sin(y)y′ = z2.

If y′ = sin z, let u1 = sin z and u2 = cos z, then y′ = u1, u′

1 = u2z
′ and

u′

2 = −u1z
′.
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More Examples

If y = 1/(1 − t), then y′ = 1/(1 − x)2 = y2 with y(0) = 1.
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If y = 1/f(t) where f has a known Taylor series, let z = f ′/f , then
y′ = −f ′/f2 = −yz and z′ = (ff ′′

− f ′2)/f2 = (f ′′/f) − (f ′/f)2

= yf ′′
− z2. (Or fy = 1)

If y′ = yr for real r, let z = yr−1, then y′ = yz and z′ = (r − 1)yr−2y′

= (r − 1)y2r−2 = (r − 1)z2.

PSM for Odes – p. 12/17



More Examples

If y = 1/(1 − t), then y′ = 1/(1 − x)2 = y2 with y(0) = 1.

If y = tan t, then y′ = sec2 t = 1 + tan2 t = 1 + y2 and y(0) = 0.

If y = log(1 + t), let z = 1/(1 + t), then y′ = z and z′ = −z2.

If y = 1/f(t) where f has a known Taylor series, let z = f ′/f , then
y′ = −f ′/f2 = −yz and z′ = (ff ′′

− f ′2)/f2 = (f ′′/f) − (f ′/f)2

= yf ′′
− z2. (Or fy = 1)

If y′ = yr for real r, let z = yr−1, then y′ = yz and z′ = (r − 1)yr−2y′

= (r − 1)y2r−2 = (r − 1)z2.

If y = fr(t) where f has a known Taylor series and r is real, let z = 1/f

and w = f ′/f .
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If y = 1/(1 − t), then y′ = 1/(1 − x)2 = y2 with y(0) = 1.

If y = tan t, then y′ = sec2 t = 1 + tan2 t = 1 + y2 and y(0) = 0.

If y = log(1 + t), let z = 1/(1 + t), then y′ = z and z′ = −z2.

If y = 1/f(t) where f has a known Taylor series, let z = f ′/f , then
y′ = −f ′/f2 = −yz and z′ = (ff ′′

− f ′2)/f2 = (f ′′/f) − (f ′/f)2

= yf ′′
− z2. (Or fy = 1)

If y′ = yr for real r, let z = yr−1, then y′ = yz and z′ = (r − 1)yr−2y′

= (r − 1)y2r−2 = (r − 1)z2.

If y = fr(t) where f has a known Taylor series and r is real, let z = 1/f

and w = f ′/f . Then y′ = rfr−1f ′ = rfr(f ′/f) = ryw,
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If y = 1/(1 − t), then y′ = 1/(1 − x)2 = y2 with y(0) = 1.

If y = tan t, then y′ = sec2 t = 1 + tan2 t = 1 + y2 and y(0) = 0.
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If y′ = yr for real r, let z = yr−1, then y′ = yz and z′ = (r − 1)yr−2y′

= (r − 1)y2r−2 = (r − 1)z2.

If y = fr(t) where f has a known Taylor series and r is real, let z = 1/f

and w = f ′/f . Then y′ = rfr−1f ′ = rfr(f ′/f) = ryw, z′ = −f ′/f2

= −(f ′/f)(1/f) = wz
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More Examples

If y = 1/(1 − t), then y′ = 1/(1 − x)2 = y2 with y(0) = 1.

If y = tan t, then y′ = sec2 t = 1 + tan2 t = 1 + y2 and y(0) = 0.
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If y = 1/f(t) where f has a known Taylor series, let z = f ′/f , then
y′ = −f ′/f2 = −yz and z′ = (ff ′′

− f ′2)/f2 = (f ′′/f) − (f ′/f)2
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− z2. (Or fy = 1)

If y′ = yr for real r, let z = yr−1, then y′ = yz and z′ = (r − 1)yr−2y′

= (r − 1)y2r−2 = (r − 1)z2.

If y = fr(t) where f has a known Taylor series and r is real, let z = 1/f

and w = f ′/f . Then y′ = rfr−1f ′ = rfr(f ′/f) = ryw, z′ = −f ′/f2

= −(f ′/f)(1/f) = wz and w′ = (f ′′f − f ′2)/f2 = (f ′′/f) − (f ′/f)2 =

zf ′′
− w2.

PSM for Odes – p. 12/17



More Examples

If y = 1/(1 − t), then y′ = 1/(1 − x)2 = y2 with y(0) = 1.

If y = tan t, then y′ = sec2 t = 1 + tan2 t = 1 + y2 and y(0) = 0.

If y = log(1 + t), let z = 1/(1 + t), then y′ = z and z′ = −z2.

If y = 1/f(t) where f has a known Taylor series, let z = f ′/f , then
y′ = −f ′/f2 = −yz and z′ = (ff ′′

− f ′2)/f2 = (f ′′/f) − (f ′/f)2

= yf ′′
− z2. (Or fy = 1)

If y′ = yr for real r, let z = yr−1, then y′ = yz and z′ = (r − 1)yr−2y′

= (r − 1)y2r−2 = (r − 1)z2.

If y = fr(t) where f has a known Taylor series and r is real, let z = 1/f

and w = f ′/f . Then y′ = rfr−1f ′ = rfr(f ′/f) = ryw, z′ = −f ′/f2

= −(f ′/f)(1/f) = wz and w′ = (f ′′f − f ′2)/f2 = (f ′′/f) − (f ′/f)2 =

zf ′′
− w2. (Or y′ = rfr−1f ′

⇒ fy′ = ryf ′)
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Systematic Approach

Given y′ = f(t, y), using order of operations from the inside out,
identify functions (and odes that define them) in polynomial form.
Build outwards until f is in polynomial form.
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Systematic Approach

Given y′ = f(t, y), using order of operations from the inside out,
identify functions (and odes that define them) in polynomial form.
Build outwards until f is in polynomial form.

Identify intermediate variables so the right hand side is in quadratic
form.
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Systematic Approach

Given y′ = f(t, y), using order of operations from the inside out,
identify functions (and odes that define them) in polynomial form.
Build outwards until f is in polynomial form.

Identify intermediate variables so the right hand side is in quadratic
form.

Apply recurrence relations to find Taylor series.
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More Substantial Example

If y′ = 1/(sin y + 2et),
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More Substantial Example

If y′ = 1/(sin y + 2et),
let u1 = sin y, u2 = cos y, u3 = et, u4 = u1 + 2u3, u5 = 1/u4, u6 = u′

4/u4.
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More Substantial Example

If y′ = 1/(sin y + 2et),
let u1 = sin y, u2 = cos y, u3 = et, u4 = u1 + 2u3, u5 = 1/u4, u6 = u′

4/u4.
Then
y′ = u5,
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More Substantial Example

If y′ = 1/(sin y + 2et),
let u1 = sin y, u2 = cos y, u3 = et, u4 = u1 + 2u3, u5 = 1/u4, u6 = u′

4/u4.
Then
y′ = u5,

u′

1 = cos(y)y′ = u2u5,
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More Substantial Example

If y′ = 1/(sin y + 2et),
let u1 = sin y, u2 = cos y, u3 = et, u4 = u1 + 2u3, u5 = 1/u4, u6 = u′

4/u4.
Then
y′ = u5,

u′

1 = cos(y)y′ = u2u5,

u′

2 = − sin(y)y′ = −u1u5,
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More Substantial Example

If y′ = 1/(sin y + 2et),
let u1 = sin y, u2 = cos y, u3 = et, u4 = u1 + 2u3, u5 = 1/u4, u6 = u′

4/u4.
Then
y′ = u5,

u′

1 = cos(y)y′ = u2u5,

u′

2 = − sin(y)y′ = −u1u5,

u′

3 = et = u3,
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More Substantial Example

If y′ = 1/(sin y + 2et),
let u1 = sin y, u2 = cos y, u3 = et, u4 = u1 + 2u3, u5 = 1/u4, u6 = u′

4/u4.
Then
y′ = u5,

u′

1 = cos(y)y′ = u2u5,

u′

2 = − sin(y)y′ = −u1u5,

u′

3 = et = u3,

u′

4 = u′

1 + 2u′

3 = u2u5 + 2u3,
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More Substantial Example

If y′ = 1/(sin y + 2et),
let u1 = sin y, u2 = cos y, u3 = et, u4 = u1 + 2u3, u5 = 1/u4, u6 = u′

4/u4.
Then
y′ = u5,

u′

1 = cos(y)y′ = u2u5,

u′

2 = − sin(y)y′ = −u1u5,

u′

3 = et = u3,

u′

4 = u′

1 + 2u′

3 = u2u5 + 2u3,

u′

5 = −u′

4/u
2
4 = −u5u6,
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More Substantial Example

If y′ = 1/(sin y + 2et),
let u1 = sin y, u2 = cos y, u3 = et, u4 = u1 + 2u3, u5 = 1/u4, u6 = u′

4/u4.
Then
y′ = u5,

u′

1 = cos(y)y′ = u2u5,

u′

2 = − sin(y)y′ = −u1u5,

u′

3 = et = u3,

u′

4 = u′

1 + 2u′

3 = u2u5 + 2u3,

u′

5 = −u′

4/u
2
4 = −u5u6,

u′

6 = (u4u
′′

4 − u′2
4 )/u2

4 = (u2u5 + 2u3)
′u5 − u2

6

= (−u1u5u5 − u2u5u6)u5 − u2
6 =

= −u1u
3
5 − u2u

2
5u6 − u2

6.
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More Substantial Example

If y′ = 1/(sin y + 2et),
let u1 = sin y, u2 = cos y, u3 = et, u4 = u1 + 2u3, u5 = 1/u4, u6 = u′

4/u4.
Then
y′ = u5,

u′

1 = cos(y)y′ = u2u5,

u′

2 = − sin(y)y′ = −u1u5,

u′

3 = et = u3,

u′

4 = u′

1 + 2u′

3 = u2u5 + 2u3,

u′

5 = −u′

4/u
2
4 = −u5u6,

u′

6 = (u4u
′′

4 − u′2
4 )/u2

4 = (u2u5 + 2u3)
′u5 − u2

6

= (−u1u5u5 − u2u5u6)u5 − u2
6 =

= −u1u
3
5 − u2u

2
5u6 − u2

6.

If in addition
u7 = u1u5, u8 = u2u5,
u9 = u5u6, u10 = u2

5,
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More Substantial Example

If y′ = 1/(sin y + 2et),
let u1 = sin y, u2 = cos y, u3 = et, u4 = u1 + 2u3, u5 = 1/u4, u6 = u′

4/u4.
Then
y′ = u5,

u′

1 = cos(y)y′ = u2u5,

u′

2 = − sin(y)y′ = −u1u5,
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4 = −u5u6,

u′

6 = (u4u
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4 − u′2
4 )/u2

4 = (u2u5 + 2u3)
′u5 − u2

6

= (−u1u5u5 − u2u5u6)u5 − u2
6 =

= −u1u
3
5 − u2u

2
5u6 − u2

6.

If in addition
u7 = u1u5, u8 = u2u5,
u9 = u5u6, u10 = u2

5,
then y′ = u5, u′

1 = u8,
u′

2 = −u7, u′

3 = u3,
u′

4 = u8+2u3, u′

5 = −u9,
u′

6 = u7u10 − u8u9 − u2
6.
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More Substantial Example

If y′ = 1/(sin y + 2et),
let u1 = sin y, u2 = cos y, u3 = et, u4 = u1 + 2u3, u5 = 1/u4, u6 = u′

4/u4.
Then
y′ = u5,

u′

1 = cos(y)y′ = u2u5,

u′

2 = − sin(y)y′ = −u1u5,

u′

3 = et = u3,

u′

4 = u′

1 + 2u′

3 = u2u5 + 2u3,

u′

5 = −u′

4/u
2
4 = −u5u6,

u′

6 = (u4u
′′

4 − u′2
4 )/u2

4 = (u2u5 + 2u3)
′u5 − u2

6

= (−u1u5u5 − u2u5u6)u5 − u2
6 =

= −u1u
3
5 − u2u

2
5u6 − u2

6.

If in addition
u7 = u1u5, u8 = u2u5,
u9 = u5u6, u10 = u2

5,
then y′ = u5, u′

1 = u8,
u′

2 = −u7, u′

3 = u3,
u′

4 = u8+2u3, u′

5 = −u9,
u′

6 = u7u10 − u8u9 − u2
6.

7 Cauchy products per
term, no transcendental
functions!
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Another Example

If y′ = cos
(

1 + e3 sin y
)

,
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Another Example

If y′ = cos
(

1 + e3 sin y
)

,
let u1 = sin y, u2 = cos y, u3 = e3u1 , u4 = cos(1 + u3), u5 = sin(1 + u3).

PSM for Odes – p. 15/17



Another Example

If y′ = cos
(

1 + e3 sin y
)

,
let u1 = sin y, u2 = cos y, u3 = e3u1 , u4 = cos(1 + u3), u5 = sin(1 + u3).
Then
y′ = u4,

u′

1 = u2u4,

u′

2 = −u1u4,

u′

3 = 3u3u
′

1 = 3u2u3u4,

u′

4 = −u5u
′

3 = −3u2u3u4u5,

u′

5 = u4u
′

3 = 3u2u3u
2
4.
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Another Example

If y′ = cos
(

1 + e3 sin y
)

,
let u1 = sin y, u2 = cos y, u3 = e3u1 , u4 = cos(1 + u3), u5 = sin(1 + u3).
Then
y′ = u4,
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1 = u2u4,

u′

2 = −u1u4,

u′

3 = 3u3u
′

1 = 3u2u3u4,

u′

4 = −u5u
′

3 = −3u2u3u4u5,

u′

5 = u4u
′

3 = 3u2u3u
2
4.

If in addition
u6 = u2u4, u7 = u3u6,
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Another Example

If y′ = cos
(

1 + e3 sin y
)

,
let u1 = sin y, u2 = cos y, u3 = e3u1 , u4 = cos(1 + u3), u5 = sin(1 + u3).
Then
y′ = u4,

u′

1 = u2u4,

u′

2 = −u1u4,
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3 = 3u3u
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1 = 3u2u3u4,

u′

4 = −u5u
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3 = −3u2u3u4u5,

u′

5 = u4u
′

3 = 3u2u3u
2
4.

If in addition
u6 = u2u4, u7 = u3u6,
then y′ = u4, u′

1 = u6,
u′

2 = −u1u4, u′

3 = 3u6,
u′

4 = −3u5u7, u′

5 = 3u4u7.

PSM for Odes – p. 15/17



Another Example

If y′ = cos
(

1 + e3 sin y
)

,
let u1 = sin y, u2 = cos y, u3 = e3u1 , u4 = cos(1 + u3), u5 = sin(1 + u3).
Then
y′ = u4,

u′

1 = u2u4,

u′

2 = −u1u4,

u′

3 = 3u3u
′

1 = 3u2u3u4,

u′

4 = −u5u
′

3 = −3u2u3u4u5,

u′

5 = u4u
′

3 = 3u2u3u
2
4.

If in addition
u6 = u2u4, u7 = u3u6,
then y′ = u4, u′

1 = u6,
u′

2 = −u1u4, u′

3 = 3u6,
u′

4 = −3u5u7, u′

5 = 3u4u7.

5 Cauchy products per
term, no transcendental
functions.
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History

JMU: Picard iteration ⇒ Taylor series for polynomial systems (Parker
& Sochacki 1996), at most quadratic, can de-couple, algebraic
structure (Carothers et al. 2005), A priori error bounds (Warne et al.
2006), Power series substitution, minimizing computation, regular
singular points, “better” differential equation representation, delay,
Chebyshev etc. (2008-current)

Automatic Differentiation (AD) community (1959-present): Powerful
tool for numerically calculating derivatives, extended to Taylor series
(80’s), can hide details from user, not as well known as it should be.

Fehlberg 1964 NASA report: N-body problem, factor of five
improvement.

Kerner (1980) polynomial systems (few examples).

Holonomic function theory.
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Future Directions

Clear understandable document.

Implement automatic translator/solver.

Implement a priori error estimate, investigate order/time step size
balance.

Further theoretical advances (regular singular points, analytic
functions, normality of numbers).

Delay differential equations.

Effectively symplectic solver.
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