Polynomial ODEs - Examples, Solutions, Properties
James S. Sochacki
Department of Mathematics and Statistics James Madison University
Harrisonburg, VA 22807
www.math.jmu.edu/~jim

Abstract

Let P be a polynomial from $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and $D \in \mathbb{R}^{n}$. I consider some properties of the class of ODEs $Y^{\prime}=P(Y) ; Y(0)=D$ and their solutions. The solution space to these ODEs form a proper subspace of the analytic functions. I will present examples highlighting the concept and practicality of polynomial ODEs including Newton's N-Body problem and root finding methods.

ACKNOWLEDGEMENTS

I thank Edgar Parker, Carter Lyons, John Marafino, David Carothers and the members of the Power Series Seminar at JMU, which includes Stephen Lucas, Joseph D. Rudmin, Roger Thelwell, Anthony Tongen and Paul Warne for their input and insight on many of the ideas presented in this talk.

Also: The automatic differentiation community, the holonomic function community and the power series community, including Fehlberg, Henrici and Knuth.

Example

$$
\begin{gathered}
x^{\prime}=1+x^{2} ; x(0)=0 . \\
x=\sum a_{i} t^{i} \\
x^{\prime}=\sum_{i=0}^{\infty}(i+1) a_{i+1} t^{i}=1+\left(\sum_{i=0}^{\infty} a_{i} t^{i}\right)^{2}=1+a_{0}^{2}+\sum_{i=1}^{\infty}\left[\sum_{j=0}^{i} a_{j} a_{i-j}\right] t^{i} \\
a_{0}=x(0) ; a_{1}=1+a_{0}^{2} ; a_{i+1}=\frac{1}{i+1} \sum_{j=0}^{i} a_{i} a_{j-i} ; i=1,2,3, \ldots
\end{gathered}
$$

$$
f(t)=\sum_{i=0}^{\infty} f_{i} t^{i}=\left[f_{0}, f_{1}, f_{2}, \ldots\right]
$$

$g(t) h(t)=\left[g_{0}, g_{1}, g_{2}, \ldots\right]\left[h_{0}, h_{1}, h_{2}, \ldots\right]=g_{0}\left[h_{0}, h_{1}, h_{2}, \ldots\right]+g_{1}\left[0, h_{0}, h_{1}, h_{2}, \ldots\right]+g_{2}\left[0,0, h_{0}, h_{1}, h_{2}, \ldots\right]+\ldots$.

$$
\left(\begin{array}{ccccccc}
h_{0} & 0 & 0 & . & . & . & 0 \\
h_{1} & h_{0} & 0 & . & . & . & 0 \\
h_{2} & h_{1} & h_{0} & 0 & . & . & 0 \\
h_{3} & h_{2} & h_{1} & h_{0} & 0 & \ldots & 0 \\
. & . & . & . & . & . & . \\
. & . & . & . & . & . & .
\end{array}\right)\left(\begin{array}{c}
\boldsymbol{g}_{\mathbf{O}} \\
\boldsymbol{g}_{\mathbf{1}} \\
\boldsymbol{g}_{\mathbf{2}} \\
\boldsymbol{g}_{\mathbf{3}} \\
. \\
\cdot
\end{array}\right)
$$

$$
\begin{gathered}
h(t)=\frac{f(t)}{g(t)} \quad h(t) g(t)=f(t) . \\
h_{0}=\frac{f_{0}}{g_{0}} \\
h_{i}=\frac{1}{g_{0}}\left(f_{i}-\sum_{j=0}^{i-1} g_{j} h_{i-j}\right) ; i=1,2,3, \ldots
\end{gathered}
$$

$$
\begin{gathered}
p=\frac{1}{g} \\
p_{0}=\frac{1}{g_{0}} ; p_{1}=\frac{1}{g_{0}}\left(1-g_{1} p_{0}\right) ; p_{i}=-\frac{1}{g_{0}} \sum_{j=0}^{i-1} g_{j} p_{i-j}, \quad i=2,3,4, \ldots \\
(p g)^{\prime}=p^{\prime} g+p g^{\prime}=0 \\
p^{\prime}=-\frac{1}{g^{2}} g^{\prime}=-p^{2} g^{\prime} \\
p^{\prime}=-w g^{\prime} ; w^{\prime}=2 p p^{\prime} \\
(i+1) p_{i+1}=\sum_{j=0}^{i}(j+1) g_{j+1} w_{i-j} ;(i+1) w_{i+1}=2 \sum_{j=0}^{i}(j+1) p_{j+1} p_{i-j}
\end{gathered}
$$

$$
\begin{aligned}
& x(t)=\frac{t}{e^{t}-1} \\
& y(t)=\frac{1}{x(t)}=\frac{e^{t}-1}{t} \\
& y(t)=\left[1, \frac{1}{2}, \frac{1}{3!}, \frac{1}{4!}, \ldots\right] \\
& \frac{f(t)-f_{0}}{t}=\left[f_{1}, f_{2}, f_{3}, \ldots\right] \\
& \begin{array}{l}
x(t)=\frac{t}{e^{t}-1}=\left[1,-1 / 2,1 / 12,0,-\frac{1}{720}, 0, \frac{1}{30240}, 0,-\frac{1}{1209600}, 0, \frac{1}{47900160}, 0,-\frac{691}{1307674368000}\right. \\
\left.0, \frac{1}{74724249600}, 0,-\frac{3617}{10670622842880000}, 0, \frac{174611}{5109094217170944000}, 0,-\frac{1}{802857662698291200000}, 0, \ldots\right]
\end{array}
\end{aligned}
$$

PROJECTIVELY POLYNOMIAL

Definition. The function $f: \mathbb{R} \rightarrow \mathbb{R}$ is projectively polynomial if there are natural numbers n, k, a polynomial $P: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ of degree k and a vector $A \in \mathbb{R}^{n}$ so that if

$$
y^{\prime}=P(y) ; y(0)=A
$$

then $f=y_{1}$. Note that this implies f is analytic on a neighborhood of 0 (i.e. $f \in \mathbb{A}$) and $f(0)=A_{1}$. We write $f \in \mathbb{P}_{n, k}$. We let $\mathbb{P}_{n}=\cup_{k} \mathbb{P}_{n, k}$ and $\mathbb{P}=\cup_{n} \mathbb{P}_{n}$. Parker and Sochacki have shown that many functions are projectively polynomial and that many ODEs can be made polynomial through auxiliary variables (Parker \& Sochacki, 1996).

The following have been shown to be equivalent statements for f being projectively polynomial (Carothers et al., 2005).
(1) There exists a polynomial $Q: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ so that $Q\left(f, f^{\prime}, \ldots, f^{(n)}\right)=0$.
(2) There exists a natural number N and real numbers a_{1}, \ldots, a_{N}; and $b_{1,1}, \ldots, b_{1, N}, \ldots, b_{N, 1}, \ldots, b_{N, N}$; and $c_{1,1,1}, \ldots, c_{1,1, N}, c_{1,2,2}, \ldots, c_{1,2, N}, \ldots, c_{1, N, N}, \ldots, c_{2,1,1}, \ldots, c_{2,1, N}, c_{2,2,2}, \ldots, c_{2,2, N}, \ldots, c_{2, N, N}, \ldots$, $\ldots c_{N, 1,1}, \ldots, c_{n, 1, N}, c_{N, 2,2}, \ldots, c_{N, 2, N}, \ldots, c_{N, N, N} ;$ and B_{1}, \ldots, B_{N}; together with functions x_{1}, \ldots, x_{N}; so that if for $j=1, \ldots, N$

$$
x_{j}^{\prime}=a_{j}+\sum_{i=1}^{N} b_{j, i} x_{i}+\sum_{i=1}^{N} \sum_{k=i}^{N} c_{j, i, k} x_{i} x_{k} ; x_{j}(0)=B_{j}
$$

then $f=x_{1}=\sum_{k=0}^{\infty} \alpha_{1, k} t^{k}$.
(3) There exists a natural number N and real numbers a_{1}, \ldots, a_{N}; and $b_{1,1}, \ldots, b_{1, N}, \ldots, b_{N, 1}, \ldots, b_{N, N}$; and $c_{1,1,1}, \ldots, c_{1,1, N}, c_{1,2,2}, \ldots, c_{1,2, N}, \ldots, c_{1, N, N}, \ldots, c_{2,1,1}, \ldots, c_{2,1, N}, c_{2,2,2}, \ldots, c_{2,2, N}, \ldots, c_{2, N, N}, \ldots$, $\ldots c_{N, 1,1}, \ldots, c_{n, 1, N}, c_{N, 2,2}, \ldots, c_{N, 2, N}, \ldots, c_{N, N, N}$; together with sequences $\alpha_{1}, \ldots, \alpha_{N}$; so that $\alpha_{1,0}=f(0)=A_{1}$ and

$$
\begin{gathered}
\alpha_{j, 1}=a_{j}+\sum_{i=1}^{N} b_{j, i} \alpha_{i, 0}+\sum_{m=1}^{N}\left(\sum_{i=m}^{N} c_{j, m, i} \alpha_{m, 0} \alpha_{i, 0}\right) \\
\alpha_{j, k}=\frac{1}{k}\left(\sum_{i=1}^{N} b_{j, i} \alpha_{i, k-1}+\sum_{m=1}^{N}\left(\sum_{i=m}^{N}\left(c_{j, m, i} \sum_{l=0}^{k-1} \alpha_{m, j} \alpha_{i, k-l-1}\right)\right)\right)
\end{gathered}
$$

for $j=1, \ldots, N$ and $f=\sum_{k=0}^{\infty} \alpha_{1, k} t^{k}$.

Consider

$$
\begin{aligned}
& x^{\prime}=-x^{r} ; x(0)=A \\
& \\
& \quad x_{2}=x^{r} \\
& x^{\prime}=-x_{2} ; x(0)=A \\
& x_{2}^{\prime}=r x^{r-1} ; x_{2}(0)=A^{r} \\
& \\
& \quad x_{3}=x^{-1} \\
& x^{\prime}=-x_{2} ; x(0)=A \\
& x_{2}^{\prime}=-r x_{2}^{2} x_{3} ; x_{2}(0)=A^{r} \\
& x_{3}^{\prime}=x_{2} x_{3}^{2} ; x_{3}(0)=\frac{1}{A} . \\
& \quad x_{4}=x_{2} x_{3} \\
& x^{\prime}=-x_{2} ; x(0)=A \\
& x_{2}^{\prime}=-r x_{2} x_{4} ; x_{2}(0)=A^{r} \\
& x_{3}^{\prime}=x_{3} x_{4} ; x_{3}(0)=\frac{1}{A} \\
& x_{4}^{\prime}=(1-r) x_{4}^{2} ; x_{4}(0)=A^{r-1} .
\end{aligned} \quad \begin{aligned}
& \left.x_{2}^{\prime}=-x x_{2} ; x(0)=A-r\right) x_{2}^{2} ; x_{4}(0)=A^{r-1} . \\
& x x^{\prime \prime}-r\left(x^{\prime}\right)^{2}=0 .
\end{aligned}
$$

$$
x^{\prime}=\sin x ; x(0)=\alpha
$$

$$
x_{2}=\sin x \text { and } x_{3}=\cos x
$$

$$
\begin{aligned}
x^{\prime}= & x_{2} ; x(0)=\alpha \\
x_{2}^{\prime}= & x_{2} x_{3} ; x_{2}(0)=\sin (\alpha) \\
x_{3}^{\prime}= & -x_{2}^{2} ; x_{3}(0)=\cos (\alpha) \\
& x_{3}^{\prime}=x_{3}^{2}-1
\end{aligned}
$$

$$
x_{3}=\frac{1-e^{2 t+2 B}}{1+e^{2 t+2 B}} \quad x_{2}=\frac{4 e^{2 t+2 B}}{\left(1+e^{2 t+2 B}\right)^{2}} . \quad x=2 \arctan e^{t+B}
$$

$$
\begin{aligned}
& x^{\prime \prime}=x_{2}^{\prime}=x_{2} x_{3} \\
& x^{\prime \prime \prime}=x_{2}^{\prime} x_{3}+x_{2} x_{3}^{\prime}=x_{2} x_{3}^{2}-x_{2}^{3}=x_{2}\left(1-x_{2}^{2}\right)-x_{2}^{3} \\
& x^{\prime \prime \prime}-x^{\prime}+2\left(x^{\prime}\right)^{3}=0
\end{aligned}
$$

Single Pendulum

$$
\ddot{\theta}=-\frac{g}{r} \cos \theta
$$

$$
\begin{gathered}
y_{1}=\theta ; y_{2}=\theta ; y_{3}=\sin \theta ; y_{4}=\cos \theta \\
y_{1}^{\prime}=y_{2} ; y_{1}(0)=\theta(0) \dot{\theta}(0) \\
y_{2}^{\prime}=-\frac{g}{r} y_{4} ; y_{2}(0)=\dot{\theta}(0) \\
y_{3}^{\prime}=y_{2} y_{4} ; y_{3}(0)=\sin (\theta(0)) \\
y_{4}^{\prime}=-y_{2} y_{3} ; y_{4}(0)=\cos (\theta(0))
\end{gathered}
$$

$$
y_{1}=\sum_{i=0}^{\infty} a_{i} t^{i} ; y_{2}=\sum_{i=0}^{\infty} b_{i} t^{i} ; y_{3}=\sum_{i=0}^{\infty} c_{i} t^{i} ; y_{4}=\sum_{i=0}^{\infty} d_{i} t^{i}
$$

$$
a_{i+1}=\frac{b_{i}}{i+1} ; b_{i+1}=-\frac{g}{r} d_{i} i+1 ; c_{i+1}=\frac{\left(\sum_{j=1}^{i} b_{i} d_{j-i}\right)}{i+1} ; d_{i+1}=\frac{\left[-\left(\sum_{j=1}^{i} b_{i} b_{i} c_{j-i}\right)\right]}{i+1} ; i=0,1,2, \ldots
$$

$$
y_{2}^{\prime \prime}=-\frac{g}{r} y_{4}^{\prime}=\frac{g}{r} y_{2} y_{3} \quad\left(\frac{y_{2}^{\prime \prime}}{y_{2}}\right)^{\prime}=\frac{g}{r} y_{3}^{\prime}=\frac{g}{r} y_{2} y_{4}=-y_{2} y_{2}^{\prime}
$$

$$
\frac{1}{2}\left(y_{2}^{2}\right)+\left(\frac{y_{2}^{\prime \prime}}{y_{2}}\right)=c \quad y_{2}^{\prime \prime}+\frac{1}{2}\left(y_{2}^{3}\right)-c y_{2}=0
$$

Newton's N body ODEs for the positions $\left(x_{i}, y_{i}, z_{i}\right)$ of $i=1, . ., N$ bodies

$$
\begin{gathered}
x_{i}^{\prime \prime}(t)=\sum_{j \neq i} \frac{m_{j}\left(x_{j}-x_{i}\right)}{r_{i, j}^{\frac{3}{2}}} ; y_{i}^{\prime \prime}(t)=\sum_{j \neq i} \frac{m_{j}\left(y_{j}-y_{i}\right)}{r_{i, j}^{\frac{3}{2}}} ; z_{i}^{\prime \prime}(t)=\sum_{j \neq i} \frac{m_{j}\left(z_{j}-z_{i}\right)}{r_{i, j}^{\frac{3}{2}}} \\
r_{i, j}=\left[\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}+\left(z_{i}-z_{j}\right)^{2}\right], j=1, \ldots, N \\
s_{i, j}=r_{i, j}^{-\frac{1}{2}} \\
x_{i}^{\prime}=u_{i} ; y_{i}^{\prime}=v_{i} ; z_{i}^{\prime}=w_{i} \\
u_{i}^{\prime}=\sum_{j \neq i} m_{j}\left(x_{j}-x_{i}\right) s_{i, j}^{3} ; v_{i}^{\prime}=\sum_{j \neq i} m_{j}\left(y_{j}-y_{i}\right) s_{i, j}^{3} ; w_{i}^{\prime}=\sum_{j \neq i} m_{j}\left(z_{j}-z_{i}\right) s_{i, j}^{3} \\
s_{i, j}^{\prime}=-\frac{1}{2} s_{i, j}^{3}\left[2\left(x_{i}-x_{j}\right)\left(u_{i}-u_{j}\right)+2\left(y_{i}-y_{j}\right)\left(v_{i}-v_{j}\right)+2\left(z_{i}-z_{j}\right)\left(w_{i}-w_{j}\right)\right], \quad i, j=1, \ldots, N .
\end{gathered}
$$

$$
f(t)=\sum_{i=0}^{n+2} a_{i} t^{i}=a_{0}+a_{1} t+\ldots+a_{n+2} t^{n+2} \quad f\left(f^{-1}(t)\right)=t
$$

If we let $z=f^{-1}(t)$ we have $f(z)=t, f^{\prime}(z) z^{\prime}=1$, and $z^{\prime}=\frac{1}{f^{\prime}(z)}=\left[f^{\prime}(z)\right]^{-1}=y$.

$$
\begin{gathered}
y^{\prime}=-y^{2} f^{\prime \prime}(z) z^{\prime}=-x f^{\prime \prime}(z) z^{\prime}=-x p_{n} z^{\prime}=-x y p_{n} ;\left(x=y^{2}\right) ;\left(p_{n}=f^{\prime \prime}(z)\right) \\
x^{\prime}=2 y y^{\prime} \\
p_{n}^{\prime}=f^{\prime \prime \prime}(z) z^{\prime}=p_{n-1} y \\
p_{n-1}^{\prime}=f^{(i v)}(z) z^{\prime}=p_{n-2} y \\
p_{1}^{\prime}=f^{(n+2)}(z) z^{\prime}=(n+2)!a_{n+2} y \\
y=\sum_{i=0}^{K} y_{i} t^{i} ; y^{\prime}=\sum_{i=0}^{K-1}(i+1) y_{i+1} t^{i} ; x=\sum_{i=0}^{K} x_{i} t^{i} \\
p_{n-k}=\sum_{i=0}^{K} p_{(n-k), i} t^{i} ; k=0, \ldots, n-1 .
\end{gathered}
$$

$$
\begin{gathered}
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)} \quad x^{\prime}=-\frac{f(x)}{f^{\prime}(x)} \\
x^{\prime}=-f(x) x_{2} \quad x_{2}^{\prime}=-x_{2}^{3} f^{\prime \prime}(x) \\
x^{\prime}=-[D f(x)]^{T} f(x)=G(x) \\
x_{k+1}=x_{k}+\alpha_{k} \nabla f\left(x_{k}\right) \quad x^{\prime}(t)=\alpha(t) \nabla f(x) \\
x^{\prime}=-\alpha(t)[D f(x)]^{T} f(x)
\end{gathered}
$$

$$
\begin{gathered}
u_{t}+(f(u))_{x}+\mu^{2} u_{x x}=0 ; \quad u(x, 0)=\alpha(x) \\
w=f(u) \\
u_{t}+w_{x}+\dot{\mu}^{2} u_{x x}=0 ; \quad-\quad u(x, 0)=\alpha(x) \\
w_{t}+f^{\prime}(u)\left(w_{x}+\mu^{2} u_{x x}\right)=0 ; \quad w(x, 0)=f(u(x, 0))=\beta(x)
\end{gathered}
$$

If $w=u^{2} / 2$ and $\mu=0$ then

$$
\begin{gathered}
u_{t}=-w_{x} ; \quad u(0, x)=\alpha(x) \\
w_{t}=u u_{t}=-u w_{x} ; w(0, x)=\frac{\alpha(x)^{2}}{2} \\
\text { If } w_{k}=\sum_{n=0}^{k} b_{n} t^{n} \text { then } b_{0}(x)=\frac{\alpha^{2}(x)}{2} \\
u_{k+1}=u_{k}+a_{k+1}(x) t^{k+1}=u_{k}-\frac{b_{k}^{\prime}}{k+1} t^{k+1} \\
w_{k+1}=w_{k}+b_{k+1} t^{k+1}=w_{k}-\frac{\sum_{n=0}^{k} a_{n} b_{k-n}^{\prime}}{k+1} t^{k+1}
\end{gathered}
$$

