DIRECTIONS:

- **STAPLE** this page to the front of your homework (don't forget your name!).
- Show all work, clearly and in order You will lose points if you work is not in order.
- When required, do not forget the units!
- Circle your final answers. You will lose points if you do not circle your answers.

Question	Points	Score
1	1	
2	3	
3	2	
4	1	
5	1	
6	1	
7	1	
Total	10	

Problem 1: (1 point) Solve the difference equation $y_{n+1} = (-1)^{n+1}y_n$ in terms of an initial value y_0 . Describe the behavior of the solution as $n \to \infty$.

Problem 2: (3 points) Consider the initial value problem

$$y' = 2xy, y(0) = 1.$$

(a) (1.5 points) Use Picard's method to find a solution to the differential equation y' = 2xy.

(b) (1.5 points) Prove that this solution is unique.

Problem 3: (2 points) Solve the given equation

$$(3x^{2}y + 2xy + y^{3}) dx + (x^{2} + y^{2}) dy = 0.$$

(Hint: Consider using an integration factor.)

Problem 4: (1 point) Solve the initial value problem

$$y'' - y' - 2y = 0$$
, $y(0) = \alpha$, $y'(0) = 2$.

Find the value of α such that the solution approaches 0 as $t \to \infty$.

Problem 5: (1 point) If the Wronskian, W of f and g is $3e^{4t}$, and if $f(t) = e^{2t}$, find g(t).

Problem 6: (1 point) Find the solution of the initial value problem

$$y'' + 2y' + 2y = 0$$
, $y(\pi/4) = 2$, $y'(\pi/4) = -2$.

Problem 7: (1 point) Use the method of reduction of order to find a second solution of

 $(x-1)y'' - xy' + y = 0, \quad x > 0,$

where $y_1(x) = e^x$.