DIRECTIONS:

- **STAPLE** this page to the front of your homework (don't forget your name!).
- Show all work, clearly and in order You will lose points if you work is not in order.
- When required, do not forget the units!
- Circle your final answers. You will lose points if you do not circle your answers.

Question	Points	Score
1	1	
2	2	
3	2	
4	3	
5	2	
Total	10	

Problem 1: (1 point) Find the values of $i^{\sqrt{3}}$ (Note, you needn't restrict yourself to the Principle Branch).

$$i^{\sqrt{3}} = e^{\log(i^{\sqrt{3}})} = e^{\sqrt{3}}\log i,$$
$$\log i = \frac{i\pi}{2} (4n+1),$$

 $i^{\sqrt{3}} = e^{\frac{\sqrt{3}i\pi}{2}(4n+1)},$

for $n = 0, \pm 1, \pm 2, ...$ Hence

where

where $n = 0, \pm 1, \pm 2, ...$

Problem 2: (2 points) Find the solutions of

$$z^{\pi+i} = 10.$$

 $e^{\log z^{\pi+i}} = e^{\log 10} = \ln 10 + 2\pi in,$

for $n = 0, \pm 1, \pm 2, ...$ Hence

$$(\pi + i)\log z = \ln 10 + 2\pi i n.$$

Multiplying both sizes by $\pi - i$ then dividing by $\pi^2 + 1$ we find

$$\log z = x + iy,$$

where

$$\begin{aligned} x &= \frac{\pi \left(\ln 10 + 2n \right)}{\pi^2 + 1}, \\ y &= \frac{-\ln 10 + 2\pi^2 n}{\pi^2 + 1}. \end{aligned}$$

Hence $z = e^x (\cos y + i \sin y)$.

Problem 3: (2 points) Given the formulae

$$\cosh x = \frac{1}{2} \left(e^x + e^{-x} \right)$$
, and $\sinh x = \frac{1}{2} \left(e^x - e^{-x} \right)$,

for $x \in \mathcal{R}$, prove that

 $\cos z = \cos x \cosh y - i \sin x \sinh y.$

for $z = x + iy \in \mathcal{C}$.

First we note that

$$e^{iz} = e^{ix-y} = e^{-y} (\cos x + i \sin x),$$

$$e^{-iz} = e^{-ix+y} = e^{y} (\cos x - i \sin x).$$

Hence

$$\cos(x+iy) = \frac{1}{2} \left(e^{iz} + e^{-iz} \right) = \frac{1}{2} \left[\cos x \left(e^y + e^{-y} \right) - i \sin x \left(e^y - e^{-y} \right) \right] = \cos x \cosh y - i \sin x \sinh y.$$

Problem 4: (3 points) Prove that

$$\tan^{-1} z = \frac{i}{2} \operatorname{Log}\left(\frac{1-iz}{1+iz}\right),$$

for $z \neq \pm i$.

Let $w = \tan z$, then $z = \tan^{-1} w$.

$$w = \tan z = \frac{\frac{1}{2i} \left(e^{iz} - e^{-iz} \right)}{\frac{1}{2} \left(e^{iz} + e^{-iz} \right)}.$$

Hence

$$iw(e^{iz} + e^{-iz}) = e^{iz} - e^{-iz}.$$

Multiplying both sizes by e^{iz} and solving for e^{2iz} we find

$$e^{2iz} = \frac{1+iw}{1-iw},$$

and solving for z so long as $w \neq i$ yields

$$z = \frac{i}{2} \operatorname{Log}\left(\frac{1 - iw}{1 + iw}\right),$$

(note $-\log(x) = \log x^{-1}$ so long as we make certain $x \neq 0 \iff w \neq -i$). Then replacing w with z we find

$$\tan^{-1} z = \frac{i}{2} \operatorname{Log}\left(\frac{1-iz}{1+iz}\right),$$

for $z \neq \pm i$.

Problem 5: (2 points) Parametrize the circle of radius ϵ centered at $z_0 \in C$. How does this relate to proving that

$$\int_{\gamma} \frac{1}{z - z_0} = \begin{cases} 0, & \text{if } z_0 \text{ is outside } \gamma, \\ 2\pi i, & \text{if } z_0 \text{ is inside } \gamma. \end{cases}$$

where γ is a piece-wise smooth, positively oriented, simple closed curve.

We may parametrize the circle $\gamma_1(t) = z_0 + \epsilon e^{it}$ where $t \in [0, 2\pi]$. This is the circle of radius ϵ parametrized in the counterclockwise direction. If we isolate a pole z_0 (see class notes) inside γ_1 which is wholly within γ , we can show

$$\int_{\gamma} \frac{1}{z - z_0} = \begin{cases} 0, & \text{if } z_0 \text{ is outside } \gamma, \\ 2\pi i, & \text{if } z_0 \text{ is inside } \gamma. \end{cases}$$