The Speed and Power of Rumors

Fame, the great ill, from small beginnings grows:
Swift from the first; and ev'ry moment brings
New vigor to her flights, new pinions to her wings.
Soon grows the pigmy to gigantic size;

Her feet on earth, her forehead in the skies.
-Vergil, Aeneid 1V.173 ff.
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Abstract

Rumors affect everyone, whether a student or business titan. From friendships to
marriages—no matter the relationship—rumors have the ability to destroy in a
particularly virulent fashion. There is no better reason to seek to understand their
mechanism(s), speed, and effect on a person’s reputation - all of which, we believe, can be
explained mathematically. We consider several aspects (such as gossip transmission rate)
of a community and quantify them, and demonstrate how such variables affect of spread as
well as the interest and intrigue generated over time. Finally, we compare different types
of rumors, and attempt to quantify the different characteristics of rumors, for example
distinguishing between rumors like “Area 51 Contains Aliens”! and rumors like “Alex has
cooties.”2

Problem Statement

Our research began after speaking to Grandpa Brandt, who sagaciously quoted Benjamin
Franklin: “Three may keep a secret, if two of them are dead.” Converting this maxim into a
mathematical model, we can see that for any g number of people who have heard gossip
and serve as constant spreaders of a rumor with a transmission rate, y, for some time, ¢, the
differential equation that describes the spread of rumors over time is

dg
di g)/'
This can be easily solved as
g =e’ﬂ+C _c,e‘)/t

Hence, as t tends towards infinity, the spread of gossip tends towards infinity as well. At
this point, reality begins to greatly contradict our model. The simple truth of the matter is
that rumors occur every day and do not infect the whole of humanity. Furthermore, the
population of humanity does not tend towards infinity as time tends toward infinity.
Clearly, to accurately model the spread of rumors among people, limiting factors must be
applied, such as the size and susceptibility of a community to gossip. In addition, a separate
model must be proposed to explain conditions variable transmission rates.

While modeling the spread of rumors among a population illuminates their infectious
quality, the spread is mainly significant due to the social repercussions they may have for
the subject of a rumor. An entirely new model must be proposed to deal with the question
of how rumors affect a person’s reputation. This needs to account for the unpredictable
nature of rumors to both help and hinder the reputations of those the rumors concern.

Ultimately, any model, no matter how theoretically sound or beautiful, is only as good as its
ability to predict or model a given physical phenomena. Rather than going to various

L http://www.unexplained-mysteries.com/forum/index.php?showtopic=41132
2 A particularly scarring personal 1st grade experience.



schools, offices, and houses of worship and “infecting” a person in these communities,
waiting several months to watch the ensuing chaos, and incurring hundreds of thousands
of dollars in slander and libel lawsuits, we will use a few lines of computer code to model
the random behavior of humans, by using a computerized version of Euler’s method to
solve our given differential equations.

Model Design

Our first consideration is the ability of the human brain to forget. Whatever the reason, lack
of interest will most likely set into people who gossip (or possibly other, better rumors will
replace the original). Hence, we should introduce a boredom coefficient a into our
equation, affecting g, the population of gossips. Furthermore, we should know that the only
way gossip can spread is if a gossiping person comes into contact with a non-gossiping
person. The modified equation would then look something like this:

% _ gpy-ga
dr =8PY -8 .

We should also distinguish between different types of non-gossipers. First, there are those
in the community of a weaker moral fiber who are susceptible to become gossipers by their
disposition and proximity in social networks, geography, or other attributes. On the other
hand, there are those who are not gossipers but are also not susceptible to becoming
gossipers. We will denote the susceptible population as p and the unsusceptible population
as u. While u may seem insignificant as of thus far, we will assume that there is an exchange
between u and p- possibly individuals change in their characteristics or in their proximity
to gossipers. We will call this rate of exchange (more specifically, the rate of migration into
p from u) 6. This constant’s effect however, will be changed by the value of p, since the
greater the susceptible population, the more likely unsusceptible people will be to become
susceptible- this results in the term pd. Furthermore, the people who become bored with
the rumor after being gossipers will transfer into the unsusceptible population- this results
in the term og in the unsusceptible population rate equation. So, the equations for the rates
of these populations would be:

dp

— = +pd

dr &Py +p ’
and

du

= _ag-pd
dr gp'



Goasiping Now our differential
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Figure 1: Cyclical equilibrium has been established (given
the arbitrary standard

positive constants fory, 9§,
and a), and the solution is orbiting around the center corresponding to the seed value of
100 gossipers and 300 susceptible non-gossipers. This model well supports the “Area 51”
style rumor - a rumor that has been around for a long time and refuses to die down. Every
so often there is a spike in the amount of interest in extraterrestrial life, but this often
subsides when experts from the scientific community and government assure us that such
facts are untrue.* This statistic can be verified when we remember that about 95% of
Americans have heard or read rumors about UFOs flying around the night skies, but only
57% believe they are real.> There is a fairly constant 38% who have heard but do not
believe, either because they used to believe and have either been converted to a naysayer,
or they heard and never believed in the first place. As new Americans enter the community
(by immigration or birth), they will in turn become susceptible to the rumors and will
either gossip or disregard.
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Now that we’ve seen a model for a steady state rumor, it’s productive to look at a model for
a rumor that’s decaying- a rumor that is less and less interesting or gossip-worthy over
time. For this model, rather than just the straight boredom coefficient o, we add a
mechanism for changing this coefficient over time as f, the rate of change in the boredom
coefficient, times t, the time:

dg
— = -(a+pt
5 8y -(a+p )).
The other equations become

dp

o 5

dr 8py+p ’

and

3 Generated with Mathematica using the NDsolve and StreamPlot functions.

4 That’s not to say the authors of this paper believe such lies. The truth is out there.

5 https://www.cia.gov/library/center-for-the-study-of-intelligence/csi-publications/csi-
studies/studies/97unclass/ufo.html



§=(a+ﬁt)g—p5.

Thus, illustrating that the total population of individuals is constant,

dg dp du_,
dt dt dt

Here we see that our coefficient of boredom grows larger and larger with time with a
positive . This will send the amount of gossipers to 0 as time tended towards a very large
value. Note that all our constants have been without units thus far, as this is dependent on
what units we choose for our constants. Let’s take a look at a modeling of the equation
with initial values g(0) = 1, u(0) = 500, p(0) = 10000, and constants of a =.02,  =.0001, y =
.00001 and 6 =.000001. Here the time series are shown in Figure 2. For more information
on the computer modeling of these equations, see Appendix A. For information on the plot
development, see Appendix B.

Figure 2: G, P, and U Plotted vs. Time
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For this model, we can see that the gossip is initially overpowering to the reduction terms.
The spike in gossipers rises from 1 to almost a maximum of 4820, but then it gradually
levels off towards zero (slower than it rises, mind you). While this curve may appear
vaguely Gaussian, by careful analysis with standard statistical tools such as the Normal Q-Q
Plot, we observed that the distribution of gossipers is not Normal. This result is fitting with
the common knowledge that gossip is very easy to spread, and it often takes a much longer
time for it to fall. Meanwhile, the number of unsusceptible non-gossipers consistently
increases, and the number of susceptible non-gossipers consistently decreases. Hence, at
this point we’ve modeled different types and its growth and decline in various communities
or populations.

Discussion and Conclusion

Our model succeeded in producing generally expectable results as to a rumor’s growth and
typical later decline. In its introduction of a boredom coefficient linearly dependent on
time, the model was able to broadly distinguish between rumors and take each rumor’s
individual characteristics into account. This, of course, does not completely accurately
quantify a rumor’s attributes, as only going up to a linear dependence on only the variable
of time will only at best generally mirror reality. Nonetheless, such an inclusion made it
possible for our model to explain, for example, both rumors which skyrocketed and waned
only slightly and ones which increased initially but quickly declined in popularity.

Furthermore, our inclusion of exchange between unsusceptible and susceptible segments
of the total population provided a rough mechanism for mirroring difference in people’s
tolerance of and general ability to receive gossip and become gossipers. Again, the model
only did so assuming migration between these two groups happened at a constant rate
independent of time, so while it was better than nothing, it could not fully depict the
changes in susceptibility of the total population over time.

As our model shows, for a model whose characteristic boredom term increases over time
(the sum a + Bt increases due to a positive 3), the number of gossipers will initially rise,
then reach some maximum, and then fall towards zero. Meanwhile, assuming a positive
flow of individuals from the unsusceptible to susceptible population, the number of
unsusceptible individuals will eventually decrease to zero as well. Finally, the number of
susceptible individuals will probably decrease at first (depending on the relative
magnitudes of the rumor’s transmission rate and the migration rate between unsusceptible
and susceptible populations) and then increase to consist of the total population being
considered.

At a basic level, our model takes into account the essential components of the problem of
rumor modeling and manages to fit the general shape of a rumor’s popularity. Using a
variant of the Lotka-Volterra predator-prey models (more specifically the parasite model),
the modeling of the interaction between gossipers and the susceptible population in being
a constant times their product, since the interaction between the two groups should be



linearly dependent on each of their populations. One limitation of even this fairly
unobjectionable statement, however, is that the whole system of categorizing and
quantifying people to such a degree belies the actual more amorphous nature of rumors
and the chances of individuals encountering and adopting them. Fundamentally, however,
the model is sound.

Rumors are not simple phenomena and are naturally hard to model. Through the use of
differential equations with multiple constants and variables, however, such a process can

be roughly shown, with the same characteristic behavior that we would expect in real life.

Software Used

For Phase Diagram:
Wolfram’s Mathematica 7.0.2

For Time Series Modeling:
Groovy 1.6.7,JVM 1.6.0_17
R 2.10.1 64-bit
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Appendix A
Simulation Code

/* simulation.groovy

*

* Simulation for Final Project in Math 201. Alex Brandt, Mark Fornace, Jens Jensen, Yiannis
Moses.

*/

// for simplicity, def map with input settings rather than implementing cli, constants must make
sense as no error checking
def set = [

timerange : 10,

timestep : 0.01,

population : 10000, // initial population

alpha: 0.02, // alpha = boredom coeff

beta: 0.0001, // beta = boredom decay coeff

gamma : 0.00001, // gamma = transmission rate

delta : 0.000001 // delta = induction rate for population

// def map to hold state

def state = [
p : set.population,
g : 1,
u: 500
1
println "t\tg\tp\tul\ttot" // print header
// step from 0 to timerange by timestep
for (t = 0; t <= set.timerange; t += set.timestep) {
// dump current state to output
output = [t, state.g, state.p, state.u, (state.p + state.g + state.u)]

println output.join ("\t")

// compute temp variables to hold changes so we are not modifying state as we calculate changes
// cast them as float or Groovy will use Java's arbitrary-precision BigDecimal class

tempg = (float) (state.g * (state.p * set.gamma - (set.alpha + set.beta * t)))
tempp = (float) (state.p * set.delta - state.g * state.p * set.gamma)
tempu = (float) ((set.alpha + set.beta * t) * state.g - state.p * set.delta)

state.g += tempg
state.p += tempp
state.u += tempu

Appendix B
R Code for Plot

sim = read.table("sim2.txt", header=TRUE)

attach (sim)

plot(t[1:400], g[1:400], type="1", ylim=range(0,11000), ylab="Value", xlab="Time", main="G, P,
and U Plotted vs. Time")

points (t[1:400],p[1:400],type="1", lty=4)

points (t[1:400],u[l:400],type="1", lty=2)

legend("right",c('g', 'p', 'u"), lty=c(l,4,2))



