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ABSTRACT

This paper models the progression of a disease through a set population using differential
equations. Two cases were examined. Model 1 models an asymptomatic disease within a static
population while accounting for a constant recovery without the chance of immunity. The
equation for model 1 was first order, separable, and linear. Its resulting logistic solution
entailed a scenario where the disease had no chance of dying out. Model 2 is a more realistic
yet complicated model; it modeled a disease being transmitted through a population with both
asymptomatic and symptomatic carriers while accounting for a constant recovery rate,
constant death rate from both the infected and healthy population, and constant birth rate
within the healthy population. The model for model 2 resulted in a system of nonlinear
homogeneous equations that we were unable to solve explicitly. Instead their solutions were
graphed.

PROBLEM STATEMENT

We seek to model the transmission of a disease through a population. Such modeling is very
important to the study of epidemiology and the practice of medicine, since examining the
relative effect of factors that govern the spread of a disease can help communities and health
workers better prepare for and combat an outbreak.

Every disease has certain characteristics that affect the manner in which it spreads through a
population. For instance, the virulence of a disease affects the chance that the disease will be
transmitted from a sick person to a healthy person when they meet one another. That is,
diseases with high virulence could be called very contagious. In addition, the recovery time will
affect how many people the infected individual can come into contact with before he or she is
healthy again. If a disease is contagious for a long time, it will obviously affect proportionally
more people. Some diseases have incubation periods, where the carrier will not exhibit
symptoms but is still able to transmit it to uninfected individuals. If a disease has a significant
incubation period, it would be very difficult to detect and quarantine infected individuals. For
this reason, the disease would likely spread much faster than it would if all carriers exhibited
symptoms. In addition, diseases with very clear symptoms, such as vomiting and diarrhea in the
case of e. bola, are likely to spread much slower than diseases with subtle symptoms. For some
diseases, such as chicken pox, people who recover develop immunity and are no longer
susceptible to the disease. Our goal is to create a model that takes as many of these different
characteristics into account as the scope of this project allows.

MODEL DESIGN 1



We begin with a very simple model that
gives us a starting point in our

Healthy,
investigation. This model works on a few susceptible p:)r:)fﬁ::at;:n
basic assumptions. We confine our population
population to an area where it is S /

essentially static. This population might

be similar to a dormitory at University of

Chicago—taken in a small enough span of

time, essentially no new people arrive, no Figure 1: The total population is divided into two groups,
susceptible and infected. People can move between these

one leaves, and no one is born or dies. o .
groups by becoming infected or recovering.

We also assume that our entire

population has equal susceptibility to the disease, including those who have already been
infected and recovered. The result looks something like Figure 1, where we have two
subpopulations and people moving between them at different rates. Let us call the number of
people infected /, the number of susceptible people S, and the rates of infection and recovery r,
and rg respectively. Let t represent time.

IMPLEMENTATION AND ANALYSIS

Now we may begin constructing a model. First, we know that the change in the number of
people infected over time is going to be a function of the number of people who are newly
infected less the number of people newly recovered, that is

dl
— = infected — recovered. (1)

dt
In order for someone to become infected, they must be healthy and interact with someone
who is infected. Out of each of these interactions, people become infected at the rate of
infection, so

Infected = SIry . (2)

Recoveries, however, do not depend in any way upon the healthy, susceptible population. They
are merely a function of the number infected and the recovery rate:

Recovered = Irg. (3)

Substituting equations (2) and (3) into equation (1), we get

dl

$=517'[—11'n. (4)



Note that in this equation, r; and r are constants, but S is not. This means equation (4) is not
linear in /. To solve this problem, we can call P the total population, which will be constant
under our assumptions. This means that P =/+ S, so we can say that
([—] = lP—.[l[I‘r —]l“r;' (5)
dt
There is a trivial solution when | = 0, but this isn’t very interesting, and we can hardly hope to
model an infectious disease that doesn’t exist. Equation (5) is first order, nonlinear, and

separable. We can therefore conclude that a solution exists, and is given by

/' dl "
'_ - = /(h‘. (6)
J I[(Pr;—rg)—1Ir;] .

Equation (6) is tricky but possible to integrate, and the solution is given by

1 In | I~ | =t +
11— X | = 1 C
pl'[ — TR '[[}Pl"[ — I'n] —_ ]]"r]]-"""' | ’ (7)

where cis an arbitrary constant. This solution cannot tell us much, however, since it cannot be
solved for /. However, we may be able to find something useful if we graph the solution using
Euler’s method.

Using an online Java applet that calculates values using Euler’s method, we were able to
analyze our model [1]. In order to get an idea for how solutions to this equation behave, it was
necessary to assign values to our constants (P, r;, and rg) as well as an initial value. All
manipulations were carried out with a step size of .01 days and a population of 100 people.
The rates of infection (unit people™*days™) and recovery (unit days™) were varied, as well as the
initial value at tp=0, to determine their relative effects on the behavior of the solution. Results
are summarized in table 1 and sample values from the applet can be found in the appendix.
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As our messy-looking
solution suggests, the
graph takes on a logistic
growth shape, complete
with a limiting value. As
the value of the infection
rate decreases, so does
the limiting behavior; the
time taken to reach
equilibrium increases,

Figure 2: Slope field and solutions of model 1, with several curves drawn.



however. The influence of the recovery rate is reversed, with larger values causing the limit to
decrease and the time taken to get there to increase. The initial value has no effect on the
limiting behavior of the solution, but larger values will cause the function to reach its limit
faster. See Figure 2 for a slope field and several possible graphs.

Trial | re (days™) | Initial value | Stabilization value | Time reached
( people™*days™) (infected (infected people) (days, approximate)
people)

1 A A 1 99 1.1

2 .01 A 1 a0 11

3 .005 A 1 80 30

4 .01 .01 1 99 10

5 .01 .05 1 95 10.5

6 .01 .5 1 50 17

7 .01 .05 3 95 9.1

8 .01 .05 5 95 8.6

9 .01 .05 10 95 7.8

Table 1: Variation in constant values to determine their effect on solution behavior. All solutions increased
monotonically before eventually reaching some constant value. Times are approximate because, although the
applet gives decimal values for both t and /, I is a measure of people and would in reality take on only integer
values. Times given are at or around where the value for / came to a value which would be rounded up to the
limiting value.

DISCUSSION

This model is very simple, but accurate for small, confined populations over relatively short
periods of time when we would not expect the disease to “die out” and where people have a
high amount of contact with each other. It might, for example, accurately predict the trajectory
of a disease such as the common cold as it is introduced into a dormitory or other relatively
confined populated space.

Recall that one of the important assumptions we made in this model is that the disease confers
no immunity after recovery. This means that the limiting behavior of the solution is a dynamic
equilibrium. If, for example, the limit is 80 out of 100 people, that means that after some time,
there will constantly be 80 infected people, because over any given time period after that, the
number of people newly infected and the number of people newly recovered will be the same.
Note that this does not mean that after that time there are 80 people who are and remain
infected and 20 people who are and remain healthy, but rather that there is a constant
“shuffle” of who is sick and who healthy.




Our plot will have equilibrium points when dl/dt = 0. Using this, we found our equilibrium
points to be I = P—(R,/R;). We can see this is verified most easily by looking at trial 3 in Table 1
where R, =.1 R;=.015 R,/R; = 20, P- 20 => 100-20 = 80. This was indeed the stable number of
infected people.

This model has a major flaw: we do not take into account the fact that people become immune,
or at least more resistant to an infection once they’ve recovered from it. Once the disease
propagates through the population, we would expect the number of infected people to peak,
and then begin to decline. Rather than staying at a stable equilibrium of sick people, an actual
population would acquire immunities and resistance so that the disease dies out. Because we
have no method of accounting for immunity in our model, our stable equilibrium, the points
where the disease stops spreading, are likely to represent peaks of the spread in an actual
population.

MODEL DESIGN 2

Having completed a preliminary
model, we will now try to design a &
model fit for more realistic

circumstances. In our first model, Healthy, Infactad
susceptible

population population

we operated with the assumptions
that all infected people were
asymptomatic (giving others no
reason to differentially avoid %
them) and the population was
static. This time, we will take into Figure 3: The population is still divided into two groups, but in
account people’s tendency to addition to moving between the groups, birth and death allow
avoid symptomatic carriersanda  for the population to change.

dynamic population with healthy people giving birth and both sick and healthy people dying
(Figure 3). In addition to the variables used for the first model, let g represent the percentage
of infections that become symptomatic, d, be the natural mortality rate, d, be the mortality rate
due to disease, and b be the birth rate. Also, we introduce k, the sociability constant, which

incorporates the idea that people may avoid others or not depending on the social situation.
IMPLEMENTATION AND ANALYSIS

For this model, we will end up with two different equations. First, we have the model for the
infected population, which is of the general form

d—[ = n fected — recovered — dead (8)

dt



Second, we have the model for the change in the healthy population over time, which has the
general form

dS o
m = recovered —in fected + born — dead. (9)
While the transmission rate will be much more complicated for this model, the recovery rate,
along with the other linear factors, remain relatively simple. The amount of people recovered

per unit time is still given by
Recovered = Irg . (3)

The amount of people infected per unit time must now take into account the presence of both
symptomatic and asymptomatic carriers. The proportion of symptomatic versus asymptomatic
carriers, coupled with the way our population deals with each, will have a significant effect on
the rate at which our disease spreads.

To factor in the presence of symptomatic and symptomatic carriers, we first assume that a
certain portion of the infected population is symptomatic at any given time. This could be due
to either symptomatic and asymptomatic strains, or due to an asymptomatic incubation period.
We will assign a constant g < 1 so that g times the infected population is equal to the number of
symptomatic carriers. Likewise, (1-g) times the infected population is equal to the number
asymptomatic carriers.

We will assume that people exhibiting symptoms come into contact with less people than those
who are asymptomatic. Therefore, the transmission rate from symptomatic and asymptomatic
carriers will be different. We will assign ‘sociability’ constants Ks and K; to symptomatic and
asymptomatic carriers respectively, where K< K, to reflect the difference in the transmission
rates from the two groups.

The overall transmission rate will be the transmission rates of each of these groups added
together,

newly.infected = riISqk, + riIS(1 — q)k. (10)

Factoring out the common terms, we are left with

newly infected = r,1S(qk. + (1 — @)k.) (11)

which is a modified version of equation (2).



Death and birth also follow linear models. We will assume only healthy people give birth, so
that the births per time are given by

births = bS (12)

Death will afflict both sick and healthy people, but the sick will, because of their illness, die
more frequently than the healthy ones. We therefore assign each condition—death from
disease, d), and death from everything else d, (natural causes)—a separate mortality rate. We
therefore have

deaths.in S = d,S deathsinl =d,I (13)

This gives us the tools we need to assemble our two equations. Substituting equations (3), (10),
and the infected population term of equation (12) into equation (8), we get

AL — 1 1S(qk. + (1 = q)ks) — Ir — Id,
! . (14)
For the healthy population, we substitute equations (11) and (12) into equation (9) and get:
aS. _ I — rIS(gk, + (1 — g)ks) — Sd, + Sb
dt . (15)

Equations (13) and (14) constitute a nonlinear system of equations. These are very difficult to
solve, but we can at least say: Because the functions and their derivatives are continuous, there
exists a unique solution to the system [3].
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Figure 4: A disease with a high infectivity and low
mortality. Each line represents a different initial
value of sick and healthy people.
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Figure 6: A population with a high birth rate
subjected to a moderately infectious and only
slightly deadly disease.

Figure 5: A disease with a high mortality rate.

Figure 4 shows a scenario where the disease has a high infectivity rate relative to its mortality
and recovery rate. Figure 5 shows a scenario where the mortality rate from the disease is
relatively high. Figure 6 shows a population with a high birth rate and a disease with a
moderate infectivity and low mortality.

DISCUSSION

This model’s complexity, though it makes it difficult to solve, also makes it applicable to very
large populations over long spans of time. This is because it takes into account the changes in a
population that are only applicable at a large scale. It might model an epidemic which spreads
worldwide or country-wide.

The scenario approximated in Figure 4 is something of a worst case scenario. Even in alarge
population, a disease which is particularly infectious and has a low enough mortality rate to
allow carriers to spread it before dying will end up infecting and subsequently killing the entire
population.

In Figure 5, we see the effects of a disease with a very high mortality rate. It dies out quickly no
matter how infectious it is, because carriers die before they can spread it. The population then
continues to multiply exponentially toward infinity. Technically, it will reach some sort of
carrying capacity eventually, but human population growth occurs so rapidly that it seems we
are nowhere near the limit, so this model is fairly realistic.

Figure 6 is much like Figure 4, but includes a very high birth rate. The disease is stuck at the
same dynamic equilibrium we encountered in our first model, where diseased and healthy



individuals are being exchanged at the same rate. This is a particularly interesting case that
might prove relevant in third world countries where the birth rate is particularly high.

By setting each of our differential equations to zero and then solving, we found the equilibrium
points in terms of the constants.

(di + o) (b — d.)

I=4 (gk: + (1 = @)ko)d, (16)
g = (d1 + rR)
ri(gk: + (1 — q)k.) (17)

If we plug the constants used to obtain the graph in figure 6, we can easily verify the validity of
these equations. Examining these equations, we can see that there are some values of
constants that will not yield equilibrium points. For example, if d; in the denominator of eq. 16
is 0, (this would mean our disease confers immortality on its victims) there will be no
equilibrium. Likewise, if r; is 0, (this would mean its not possible to transmit the disease from
person to person), then these formula both blow up to infinity. This obviously cannot be
correct, because it’s obvious that if the disease cannot be transmitted, the population of
infected people would go to 0 while the healthy people would continue as normal. It therefore
seems appropriate to add the constraint that r, must be greater than 0 to use these formulas.
Overall, though it does not account for resistant populations, this model is much more realistic
than model 1.

The cases presented in this paper were an attempt to model the spread of a disease through
both static and dynamic populations. Model 1 was simple and left out many important factors,
yet it served both as a fair model for small populations and, more importantly, as a template for
the more complicated second model. The second model presented is more realistic because it
considers the differing interactions of infectious people with and without symptoms. Model 2
is also useful because it incorporates the effects of a changing population by accounting for
death and birth. Although model 2 includes many relevant variables that affect the spread of a
disease, because it leaves out factors such as population density and the chance of immunity
after recovery, we cannot expect it to give an entirely accurate model for the spread of diseases
that occur in areas with variable population density, or diseases that confer immunity upon
recovery. Including these variables would have resulted in an even more complicated model
which was outside the scope of this report. On the whole, these models serve as an excellent
starting point for the modeling of disease.
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APPENDIX

JAVA APPLET VALUES FOR MODEL 1

In the interests of saving space, step size was increased to dt = .1 days for trial 1 and dt = 1 day
for all other trials; values for t larger than the first instance of the limiting value are omitted.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

t | t | t | t | t |

.10000 1.98000 1.00000 1.89000 1.00000 1.39500 1.00000 1.98000 1.00000 1.94000
.20000 3.90100 2.00000 3.55528 2.00000 1.94327 2.00000 3.90100 2.00000 3.74536
.30000 7.61080 3.00000 6.62863 3.00000 2.70170 3.00000 7.61080 3.00000 7.16318
40000 14.56626 4.00000 12.15501 4.00000 3.74588 4.00000 14.56626 4.00000 13.45509
.50000 26.86509 5.00000 21.61708 5.00000 5.17407 5.00000 26.86509 5.00000 24.42704
.60000 46.24420 6.00000 36.39946 6.00000 7.10985 6.00000 46.24420 6.00000 41.66592
.70000 70.64070 7.00000 55.90977 7.00000 9.70104 7.00000 70.64070 7.00000 63.88806

.80000 90.67391 8.00000 74.96954 8.00000 13.11090 8.00000 90.67391 8.00000 83.76487
.90000 98.22350 9.00000 86.23781 9.00000 17.49578 9.00000 98.22350 9.00000 93.17596
1.00000 98.98621 10.00000 89.48224 10.00000 22.96358 10.00000 98.98621 10.00000 94.87553
1.10000 98.99986 11.00000 89.94554 11.00000 29.51238 11.00000 98.99986 11.00000 94.99362
1.20000 99.00000 12.00000 89.99452 12.00000 36.96243 12.00000 99.00000 12.00000 94.99968

13.00000 89.99945  13.00000 44.91630 13.00000 94.99998

14.00000 89.99995  14.00000 52.79545 14.00000 95.00000
Trial 6 15.00000 89.99999  15.00000 59.97683  Trig| 8

16.00000 90.00000  16.00000 65.98146

17.00000 70.60628 Trial 9

t ! 18.00000 73.92256  t '
1.00000 1.49000 Trial 7 19.00000 76.16886  1.00000 9.50000
2.00000 2.21280 20.00000 77.62793 ~ 2.00000 17.62250  * !
3.00000 3.27023 21.00000 78.54862  3-00000 31.25835 ~ 1.00000 18.50000
4.00000 4.79841 t | 22.00000 79.11864 4.00000 51.18294 2.00000 32.65250
5.00000 6.96736 1.00000 5.76000 23.00000 79.46730  5-00000 73.60980 3.00000 53.01052
6.00000 9.96560 2.00000 10.90022 24.00000 79.67896  6-00000 89.35508 4.00000 75.26936
7.00000 13.95527 3.00000 20.06729 5 00000 79.80686  7-00000 94.39910 5.00000 90.12049
8.00000 18.98541 4.00000 35.10425 26.00000 79.88393  8.00000 94.96634 6.00000 94.51793
9.00000 24.87366 5.00000 56.13021 27.00000 79.93029 9.00000 94.99831 7.00000 94.97357

10.00000 31.12350  6.00000 77.94790 5800000 79.95815  10.00000 94.99992 ~ 8.00000 94.99867
11.00000 36.99853  7.00000 91.23965 29.00000 79.97488  11.00000 95.00000 ~ 9-00000 94.99993
12.00000 41.80888  8.00000 94.67058 3060000 79.98493 10.00000 95.00000
13.00000 45.23350  9.00000 94.98244 i 'qoo00 20'ag09e
14.00000 47.38955  10.00000 94.99912 350000 79.99457
15.00000 48.62663 ~ 11.00000 94.99996 33 (0000 79.99674

16.00000 49.29445 ~ 12.00000 95.00000 3, 456000 79.99805

17.00000 49.64225 35.00000 79.99883
18.00000 49.81984 36.00000 79.99930
19.00000 49.90960 37.00000 79.99958
20.00000 49.95472 38.00000 79.99975
21.00000 49.97734 39.00000 79.99985
22.00000 49.98866 40.00000 79.99991
23.00000 49.99433 41.00000 79.99995
24.00000 49.99717 42.00000 79.99997
25.00000 49.99858 43.00000 79.99998
26.00000 49.99929 44.00000 79.99999
27.00000 49.99965 45.00000 79.99999
28.00000 49.99982 46.00000 80.00000

29.00000 49.99991
30.00000 49.99996
31.00000 49.99998
32.00000 49.99999
33.00000 49.99999
34.00000 50.00000



