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Abtract

In an e�ort to control the negative e�ect that disease can have an a population of
people mathematicians and scientist try to tracks its progression of the disease as
it spreads. They are able to do this by taking the characteristics of the disease,
mapping the populations it could a�ect, and modeling it's progression using
various techniques of solving complex di�erential equations. When mapping the
spread of diseases, biologists can identify the steady states of the disease. They
can also get an approximation as to the allotted time they have to prevent the
epidemic or pandemic from reaching that point. This can be a di�cult venture
due to the wide variety of ways a disease can spread. We explore the various
ways in which a disease can migrate, and the e�ectiveness modeling the disease
is at predicting real life disease �ow.

By modeling the movement of a particular disease, equipped with knowledge
about all its relevant characteristics, we will simulate the movement of the dis-
ease in simpli�ed models. Using simple models we should see how the di�erent
characteristics of a disease a�ect its how one models its progression. We will
also notice the limitations that simple modeling has in predicting the outcome
of complex, non-linear systems.

Introduction

Disease can be de�ned as a type of illness that is caused by the infection of
healthy (uninfected) people by disease causing pathogens. Di�erent diseases
have di�erent characteristics that a�ect population dynamics. In general, dis-
eases divide the total population into at least two subsets; infected and healthy.

The movement of members of the population into subsets (represented by
arrows) of the total population occur from various dierences in the types of
diseases and how they infect people. Disease may have any combiniation of
these characteristics.

• It may be terminal:

These diseases result in death, which remove people from the total popu-
lation. Notice that the healthy population may reproduce new members
into the population indicated by the curved arrow.
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• It may be curable:

These diseases have cures which enable members of the infected population
to move back to the healthy population.

• It may be communicable:

These diseases spread through direct or indirect contact of the infected
population with the suseptible population. In many cases, the entire
healthy (uninfected) population is suseptible to infection. However, in
some cases the healthy population are made of two subsets, susceptible
and unsusceptible. The case of the unsusceptible population can arise
from natural or articial immunities against an infection. This often occurs
when an infected individual is cured or recovers, they may not be able to
get the infection again due to a natural immunity.

• It may have Assymptomatic or Symptomatic populations:

Diseases of this type divides the infected population into two subsets: as-
symptomatic and symptomatic. The symptomatic population are people
who are infected by the disease and show signs of illness. Assymptomatic
population are people who are infected but don't show any signs of illness.
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Depending on the disease, members of the symptomatic population can
move to the assymptomic population over some time or vice-versa.

Infectious Mononucleosis

Mononucleosis (Mono) is a disease that has multiple characteristic which would
aect the ow of the disease in the total population. Known as the kissing disease
since it spreads through saliva, it is most common among young adults between
the ages of 15-35. The most common symptoms among the symptomatic pop-
ulation is red and sore throat, headache, fever, nausea, abdominal pains, and
white/red patched on tonsils.

It is a communicable disease, thus it spreads through the contact of the
infected population with the suseptible population at the 15% infection rate
after direct contact. However, after 12 to 18 months the diseases loses its ability
to spread through contact makin it vurtually uncommunicable.

Also, in this disease there is no immunization thus the total healthy pop-
ulation is the suseceptible population. This disease has both a symptomatic
and an assymptomatic population. The infected population is put into the
symptomatic rst, then after a given time the infected members move to the as-
myptomatic population. The infected population usually show symptoms 4 to
6 weeks before becoming asymptomatic. Finally, the rate of death due to Mono
is very small, thus for the sake of simplicity we will consider it trivial enough to
be disregarded.
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Infected red blood cells look abmormal in this microscopic view of an infected
individual's blood

Model Design and Implementation of Case 1

We will model the rst more general case of a disease similar to Mono. This
diseases general case will be that of a disease which is communicable disease
where infection spreads through the contact of the suseptible population with
the infected. For the sake of simplicity we will disregard population growth,
death, and the symptomatic/assymptomatic characteristics. We will focus on
the communicable aspect of the disease (remember for Mono there is no recov-
ery).

Let the total population be described as one, susceptible fraction of the
population (S(t)), infected fraction of the popualtion (I(t)). We know β1= .15
is the rate of infection. In the general case the change in the infected population
is a product of I and S:

I ′ = β1(IS). (1)

We know,
S + I = 1. (2)

Thus,
I ′ = (1− I)β1I. (3)

Using Euler's Method of intertions we may estimate the progression of the
disease over a year's time interval.
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In+1 = f(tn, In)(∆t) + In, where f(t, I) = (1− I)β1I.

For the purposes of our real world population model, we assume initial con-
ditions with one infected individual in a city where the population is about
100,000. We will use the MatLab code:

B=.15; days=365; dt=1;

y=zeros(days,1); %Infected Population

x=zeros(days,1); %Susceptible Population

t=zeros(days,1); %Time

x(1)=.99999; y(1)=.00001; t(1)=0.0;

for j=1:days-dt;

y(j+1)=y(j)+dt*B*(y(j)-y(j)*y(j));

x(j+1)=1-(y(j+1));

t(j+1)=t(j)+dt;

end

figure(1)

plot(t,y,'r')

hold on plot(t,x,'b')

legend('infected','susceptible')

xlabel('Time in Days'); ylabel('Fraction of Total Population');

axis tight

Then we obtain the plot:

Notice that only after the �rst 100 days, the entire population moved from
the healthy to the infected population. The rate at which the infected population
grew was exponential.
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Model Design and Implementation of Case 2

For Case 2 we will focus our model on more details about mononucleuosis in
order to determine the a�ect that its assymptomatic behavior would have on
the population.

Symptomatic infectious behaviour forces one to reinterpret the validity of β
as the constant rate of illness. In the real world people who show signs of illness
are often avoided by the general uninfected population to avoid getting infected.
Thus, the real rate of infection for the symptomatic population, βs<β since it
considers the propensity for healthy people to avoid sick people. However, ex-
istance of βs ⇒ βa; the rate of infection for asymptomatic people. Since the
asymptomatic population doesn't look any dierent than the uninfected popula-
tion, thier rate of contact with uninfected people would be slightly higher than
the actual rate infection, βa > β.

Let the total population be de�ned as one, infected symptomatic fraction of
the population (I(t)), infected asymptomatic fraction of the population (A(t)),
infected non-communicable fraction of the population (N(t)), suscpetible frac-
tion of the population (S(t)), the rate of infection from the I population (βs) is
.03, the rate of infection from the A population (βa) is .18, the rate of movement
from I to A (γ1) is 35−1, and the rate of movement from A to N (γ2) is 300−1.

In this case we have the following system of equations and parameters:

I ′ = βsIS + βaAS − γ1I,
A′ = γ1I − γ2A,
N ′ = γ2A,

S = 1− (I +A+N).

We will use the following MatLab code in order to solve our system of dif-
ferential equations:

Bs=0.03; Ba=0.18;

G1=1/35; G2=1/300;

days=365*3;

dt=0.01;

steps = days/dt+1;

t = (0:dt:days);

I=zeros(size(t)); A=zeros(size(t)); S=zeros(size(t)); N=zeros(size(t));

I(1)=0.00001; A(1)=0; S(1)=0.99999; N(1)=0;

for j=1:steps-1;
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I(j+1)=I(j)+dt*(Bs*I(j)*S(j)+Ba*A(j)*S(j)-G1*I(j));

A(j+1)=A(j)+dt*(G1*I(j)-G2*A(j));

N(j+1)=N(j)+dt*(G2*A(j));

S(j+1)=1-(I(j+1)+A(j+1)+N(j+1));

end

figure(1)

plot(t,I,'r')

hold on plot(t,A,'m')

plot(t,S,'b')

plot(t,N,'g')

legend('Symptomatic','Asymptomatic','Susceptible','Non-infectious');

xlabel('Time in days/dt'); ylabel('Fraction of Population');

axis tight

We obtain the plot:

Conclusions

Notice that for the second model the progression of Mononucleosis follows the
general movement predicted by Figure A. As time increased every member of the
population moved to the non-infectous asymptomatic population. Both models
of Mono accurately predict the real progression of the disease. As one may
observe, many people are infected with the Mono disease just as decribed in
model one. Of course, Model two seems to do a better job in painting a realistic
picture of Mono since it has more parameters; notice that most people whom
are infected are non-infectous asypmtomatic just as the second model predicted.
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However, after examining the steady state one may releaze that despite the
second model being more detailed, both cases have the same outcome.

If we set both A′ and I ′equal to zero we obtain I(2γ1− βsS) = A(βaS+ γ2),
and after we set N ′equal to zero notice that A = 0 ⇒ I = 0 ⇒ S = 0. Since
S = 1−(I+A+N)⇒ S = 1−N, where S′ is negative as it approaches zero, we
essentially derive the same progression into the steady states as equations (1)
and (2) predict from the �rst model. Ultimately, for both models the infected
population will rise to one as the susceptible population falls to zero.

Despite the accuracy of the second model, its conculsions cannot be entirely
real. The issue with the model is that it implys that the infection will die out
over time, which of course is should not happen. This issue arises when a model
does not account for population growth and migration. As the uninfectous
population grows this allows for the susceptible population to grow as well due
to the natural birth rate. As the susceptible population grows without infection,
the chances for a random contact with an infectous individual either from the
initial population or migrated from another population increases. Provided that
the susceptible population has grown enough before encountering the infectous
individ- ual, there is a chance (predicted by the log base 10 theory) of a random
epidemic.

The log base 10 theory is an idea, discussed in the book �Deep Simplicity� by
John Gri�n, that attempts to explain the correlation between the magnitude
and frequency of random or chaotic events. As the Magnitude of a choatic
event like extinction, earthquakes, winning money, and epidemics increase the
frequency of the event occuring at that magnitude falls by a power of ten. The
frequency to magnitude ratio has been shown to follow close to the progression
of log base 10. An easy experiment that is used to support the chaos theory is
the frozen potatoe experiment. Once a frozen potatoe is shot at high velocity
at a wall it explodes. The fragments of the potatoe come in various sizes that
seem to follow the log base ten theory, one will �nd that the number of very
small pieces are in the order of millions while the number of chuncks 1000 times
bigger are in the order of hundreds, and one rarely �nds one or two really big
clumps of potatoe left.

These random epidemics would result in ambiguous spikes of various mag-
nitudes in the infectous symptomatic population. This sort of chaos is masked
by any model which maps the trends of the infection as fractions of the total
population, since ideally any increase in the susceptible population would follow
the same tread as the initial suscpetible population did. The actual population
model of the ow of Mononucleousis is actually much more complex due to its
non-linear nature, however both of the general models of the disease presented
in this report do an accurate job of predicting the ow of the disease.
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