http://www.legoedwest.com/page.php?25 
What makes a Robot a Robot?

Robots surround us. You most likely encounter a robot or some kind of robotic system almost everyday in your normal wanderings. They’re at the grocery store opening doors for you, at the bank spitting out money or in outer space roaming around alien terrain (OK maybe you won’t run into that one). Movies have made them famous and left most people with the impression that a robot must be a gilded android or a patchwork painted garbage can on wheels that bleeps and whistles and is somehow highly coveted by little hooded grumpy men with glowing eyes! Boo-tee-nee! It leaves us to wonder what exactly is a robot anyway.

There is quite a bit of debate over this subject and no definite answers. There have been so many things over the years called robots that everyone has a different opinion of what one should be. In my opinion, I think the best definition is the following:

Ro-bot (n.) 
An automated machine that senses the environment around it and uses that information to make decisions based on its program to react appropriately.

The process a robot goes through in order to sense and react to its environment can be broken down into three simple steps:

· Input (Sense) 

· Program (Think) 

· Output (React) 


When designing and building a robot it is important to keep these steps in mind.
How is the robot going to sense its environment? What should it do when it senses something? What instructions do we need to give it to carry out its goal?

We’ll go over this all again in more detail in a bit when we start to program, but first we need to build our first sensor for Eddie.

A touch sensor, as the name implies, tells the robot when it is touching something. They are often used on robots in bumpers, grippers or counting devices. A touch sensor consists of simple mechanism, in our case a button, that when pressed sends a signal to the RCX. This is called a “binary” sensor because it has two states, “on/off, in/out, open/closed, 0/1, you get the picture.

How it works: 

When the touch sensor is pressed in completes a circuit that allows an electrical signal to flow back to the RCX. This electrical signal indicates that the touch sensor is pressed in.

[image: image1.jpg]®

Gonnection s made.
Buton shaft pushes Electrons flow..signal is
contact pad against leads. Sentto the RCX!
‘completing a circuit

Termon Bancs

Bution i pressed

el Rk s B




Now that we know how a touch sensor works let’s build one (actually two that we will use as one) for Eddie. Follow the steps below to build the sensor. As always parts from previous steps are turned white to help distinguish where new parts should be placed. I’ll see you on the other side where we will learn how to program.

If you have built the touch sensor attachment for Eddie you may realize that I have taken a rather lengthy route to make a single touch sensor. The reason for doing this is because I want to cover both single and double touch sensor programming in this article and as you shall soon see with a minimum amount of reconfiguring we can easily switch from a single to a double sensor robot. So let’s get to it.

Programming your robot:

Our goal is to write a simple program that allows Eddie to roam around a room avoiding obstacles. To do this we need to tell our robot what to do when it runs into an object. We already know that when a touch sensor is pressed in it sends a signal to the RCX. Previously we said that it was important to remember three steps. Input, Program, Output. Our input is the signal from the touch sensor. Our program will watch for this input and then change the direction of our outputs (the motors – sometimes called “actuators”) to run an escape routine.

So what’s program? A program is the set of steps the robot needs to follow in order to complete its goal. All programs from the computer games you play to the one that tells the Mars rover to examine a specific rock are all just a series of steps. These instructions are sometimes called an “Algorithm”. It helps when designing a new algorithm for our robot to write it out first before we start programming. To start we could make a brief outline of the steps.

Go forward
When you hit something backup
Turn
Go back to the beginning.

This isn’t very specific but it has the essential set of instructions that our robot needs to achieve its goal. We can get more specific by looking at where our sensors and motors are attached to the RCX. Our touch sensors are connected to sensor port 2 and we have motors connected to power ports A and C. So given that information out outline might look like:

[START] Turn motors A and C on going Forward until a Touch Sensor on Port 2 is activated.
[BACK UP] Turn motors A and C on going Backward for 1 second.
[TURN] Turn motors A and C on in opposite directions for 1 second.
[REPEAT] Go back to Step 1.

or different still…

turn on motors A and C
if (touch sensor_2 = pressed) then
turn on motors A and C backward for 1 second
turn on motors A and C in opposite directions for 1 second
else
repeat forever

This is all called “pseudo code” and is often used by programmers to get their idea for a program down quickly.

Another way to do this is with a flow chart sometimes seeing your program makes it easier to understand.

[image: image2.jpg]




The blue diamond is a decision structure; by answering the question inside of it the program decides to do one of two things. If the answer is “NO” it goes back to the beginning and keeps going forward. If it’s “YES” it performs an escape routine by backing up and turning before wrapping back around to go forward again.

In ROBOLAB there are two levels that we are going to be initially concerned with – PILOT and INVENTOR. PILOT programming is based on a series of templates that represent steps in a program. If this is your first time using Robolab take some time and go through the tutorial exercises that come with the program to learn the basics of using the system. When you’re ready open up PILOT level 4 and let’s get started.

According to our pseudo code our first step is to have the robot go forward until the touch sensor on port 2 is pressed in. Our first step would look like this:

[image: image3.jpg]




After the touch sensor is pressed in the program proceeds to Step 2 which is to back up for one second.

[image: image4.jpg]




After the one second driving the motors backwards it’s time to make our turn.

[image: image5.jpg]




[image: image6.jpg]


Look at Step 3, the pink arrow with the line following it towards the bottom of the screen means the program will run from the green light to the red light and stop. If we were to download and run our program now it would encounter its first object, back up, turn then stop. We need to change the [image: image7.jpg]


program so that when it reaches the end of our program it returns to the beginning. Click on the “run once” arrow and change it to “run continuous” . Now when our program reaches the red light it will return to the green light and start all over again.

Download your program. Congratulations, you’ve made a robot that can roam around the room on its own.

After watching Eddie roam a bit you will notice that he always turns the same way. This usually works to get him out of a tight spot but wouldn’t it be better if we used both sensors so that if the right one was hit he would back up and turn left and visa versa. Remove the tubing that connects the two bumpers, looking at the front of Eddie move the right side touch sensor’s connection from sensor pad 2 to sensor pad 1. Do the same for the left side but move the wire from pad 2 to pad 3. We now have a double touch sensor robot.

Your robot should look like this:

[image: image8.jpg]




Let’s take a quick look at what the pseudo code might look like for this new program.

go forward
if touch sensor 1 is pressed then
go backward for 1 second
turn left
if touch sensor 3 is pressed then
go backward for 1 second
turn right
repeat forever

The flowchart would look like this:

[image: image9.jpg]Yes






Open up Inventor Level 4 and build the following program:

[image: image10.jpg]




Notice this looks a lot like out flow chart. Download and run the program. Eddie now bounces off each object and turns away from it. Congratulations! You have made a more efficient navigation program. Programmers love efficiency and are always trying to do the most work with the simplest program. Do you see a way to make our program more efficient? Can you use fewer icons or simplify it even further? Give it a try and send me your results.

Glossary:

Actuator (n.): A mechanical device that makes something move. Motors, servos, pneumatic and hydraulic cylinders are all examples of actuators.

Algorithm (n.): A set of steps that define a procedure that achieves a goal or solves a problem. This term is often used in Math and was first coined by the Iranian
mathematician, Al-Khawarizmi (813-840 C.E.) the father of modern day Algebra.

Binary (adj.): Consisting of two states.

Pseudo code (n.): A simple form of writing down the logical steps to a program using natural language instead of programming language syntax.

