TEST I

Math 231 February 11, 2003

Name:

By writing my name I swear by the honor code.

Read all of the following information before starting the exam:

- Show all work, clearly and in order. You will not get full credit if I cannot see how you arrived at your answer (even if your final answer is correct).
- Make sure that you follow the directions in each problem and that your answer matches what is asked for.
- Justify your answers algebraically whenever possible. For most problems, work done by calculator will <u>not</u> receive any points (although you may use your calculator to check your answers).
- Please keep your written answers brief; be clear and to the point. I will take points off for rambling and for incorrect or irrelevant statements.
- This test has seven problems and is worth 100 points, plus some extra credit at the end. Make sure that you have all of the pages!
- Good luck!

- **1.** $(10 \ pts)$ Give an example of:
 - a. (2 pts) An open interval:
 - **b.** (2 pts) A function that is not one-to-one:
 - c. (2 pts) A power function:
 - d. (2 pts) A rational number:
 - e. (2 pts) A rational function:
- 2. (18 pts) Fill in the blanks:
 - **a.** (2 pts) If f(-2) = 0, then $f^{-1}(0) =$ _____.
 - **b.** (2 pts) If (4,1) is a point on the graph of f(x), then the point $(_, _)$ is on the graph of f(x-2).
 - **c.** (2 pts) If (2, -3) is a point on the graph of f(x), and f(x) is an odd function, then the point $(_,_]$ is also on the graph of f(x).
 - **d.** (2 pts) If f(x) = 2 3x, then a change of $\Delta x = 4$ will always result in a change of $\Delta y =$ _____.
 - e. (2 pts) The statement "If x is rational, then x is negative" happens to be false; one counterexample is: ______.
 - **f.** (2 pts) Write this set using the simplest possible form of interval notation:

 $(-2,3] \cap (-\infty,1] = \underline{\qquad} .$

g. (2 pts) Write using the simplest possible form of interval notation:

 $(-2,3] \cup (-\infty,1] = \underline{\qquad}.$

h. (4 pts) Write down the cases you would need to consider in order to solve the inequality $x^2 - x - 2 > 0$. (Do <u>not</u> solve the inequality; just right down the cases.)

3. (24 pts) Show all work for each of the calculations below. (You may use your calculator to check your answers, but you must algebraically justify each of your answers.)

a. (6 pts) Find the equation of the linear function with slope 5 that passes through the point (3, -2).

b. (6 pts) Find the domain of $f(x) = \frac{\sqrt{x-1}}{3x-5}$. Show all work clearly by hand.

c. (6 pts) Determine algebraically (<u>not</u> with a graph) whether the function $f(x) = \frac{x^3}{x^2 + 1}$ is even, odd, or neither.

d. (6 pts) Write f(x) = |5 - 3x| as a piecewise function where each piece is defined on an *interval* of x-values.

4. (6 pts) Prove that the average rate of change of f(x) = -2x + 4 on any interval [a, b] is always equal to -2. (Remember you are writing a proof here, so your argument must be clear!)

- 5. (18 pts) Give <u>short</u> answers to each of the questions below.
 - a. (3 pts) State the triangle inequality.
 - **b.** (3 pts) State the Induction Axiom.
 - c. (3 pts) State the converse of the statement "If a < b, then a < b + 1" (your statement in such a way that you do <u>not</u> use the word "not").
 - **d.** (3 *pts*) State the contrapositive of the statement "If a < b, then a < b + 1" (your statement in such a way that you do **not** use the word "not").
 - e. (3 pts) Complete this theorem: For any real numbers A and B, $A \cdot B = 0$ if and only if:
 - f. (3 pts) Complete this theorem: For any real numbers A and B, $\frac{A}{B} = 0$ if and only if:

x	f(x)	g(x)	(f-2g)(x)	$(g \circ f)(x)$	$g^{-1}(x)$
1	3	2			
2	1	0			
3	2	3			

6. (9 pts) Use the given values of f(x) and g(x) to complete the table below.

7. (15 pts) To the right of each part below, sketch the graph of a function f(x) with domain $(-\infty, \infty)$ that has the listed properties. Make sure that the axes of your graph are clearly labeled.

- **a.** (3 pts) f(x) has a local maximum at x = 3, a global maximum at x = 1, and no global minimum.
- **b.** (3 pts) f(x) is negative and increasing everywhere, and has a horizontal asymptote at y = -2.
- **c.** (3 pts) Given that f(x) is the graph you drew in part (b) above, sketch a graph of g(x) = f(-x).
- **d.** (3 pts) f(x) is concave up on $(-\infty, 2)$ and concave down on $(2, \infty)$, always increasing, and f(2) = -1.
- e. (3 pts) Given that f(x) is the graph you drew in part (d) above, sketch a graph of g(x) = f(x+2) - 3.

Survey Questions: (2 extra credit points)

Name a question or topic that could have been on this test, but wasn't.

How do you think you did?

SPACE FOR SCRAP WORK