231 EXAM 2

You may use your notebook during the last 15 minutes of this exam. You may NOT use calculators, cell phones, loose papers, or peeking.

Math 231 October 15, 2013

Name:

By printing my name I pledge to uphold the honor code.

- 1. Determine whether each of the following is True (T) or False (F).
 - **T F** Every algebraic function is continuous on its entire domain.
 - **T F** If f is continuous everywhere, and if f(0) = -2 and f(4) = 3, then f(x) must have a root somewhere in (0, 4).
 - **T F** If $\lim_{x \to -\infty} f(x) = 3$, then the graph of f has a horizontal asymptote at y = 3.
 - **T F** If f is continuous at x = c, then f is differentiable at x = c.

T F If
$$f(c) = 10$$
, then $\lim_{x \to c} f(x) = 10$.

- **T F** Saying that 0 < |x c| is the same thing as saying that $x \neq c$.
- **2.** If $\lim_{x\to 2^-} f(x) = 2$, $\lim_{x\to 2^+} f(x) = 1$, and f(2) = 1, then f is:
 - A) continuous at x = 2C) right but not left continuous at x = 2
 - **B**) left but not right continuous at x = 2 **D**) neither left or right continuous at x = 2

3. Find
$$\lim_{x \to 2^+} \frac{1}{2-x}$$
.
A) 0 B) ∞ C) $-\infty$ D) indeterminate
4. Find $\lim_{x \to \infty} \frac{1}{2-x}$.

A) 0 B) ∞ C) $-\infty$ D) indeterminate

5. Fill in the blanks with interval notation: If $\lim_{x \to 2^{-}} f(x) = 1$, then for all $\epsilon > 0$, there is some $\delta > 0$ such that

if $x \in \underline{\qquad}$, then $f(x) \in \underline{\qquad}$.

6. Fill in the blanks with interval notation: If $\lim_{x\to\infty} f(x) = 3$, then for all $\epsilon > 0$, there is some N > 0 such that

if $x \in \underline{\qquad}$, then $f(x) \in \underline{\qquad}$.

7. Fill in the blanks:

If $|f(x) - L| < \epsilon$, then _____< f(x) <_____.

8. Fill in the blank with interval notation:

If 0 < |x - 2| < 0.5, then $x \in$ _____.

9. Calculate the limit $\lim_{x\to\infty}(\sqrt{x}-x)$. Show all work.

10. Use either the $h \to 0$ or $z \to x$ definition of derivative to show that $\frac{d}{dx}\left(\frac{1}{x}\right) = -\frac{1}{x^2}$.

$\mathbf{s}\mathbf{CRAP}$

I will not be grading anything on this page