TEST II

CIRCLE ONE: 01/02

Math 232 March 19, 2002

Name:

By writing my name I swear by the honor code.

Read all of the following information before starting the exam:

- Circle or otherwise indicate your final answers.
- Show all work, clearly and in order. I will take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Justify your answers algebraically whenever possible. For most problems, work done by calculator will <u>not</u> receive any points (although you may use your calculator to check your answers).
- Please keep your written answers brief; be clear and to the point. I will take points off for rambling and for incorrect or irrelevant statements, and add two points for drawing a house on the scrap page.
- This test has 8 problems and is worth 100 points. Make sure that you have all of the pages!
- Good luck!

Various Formulas and Identities You May or May Not Need

$$\sum_{k=1}^{N} k = \frac{N(N+1)}{2}.$$

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \sin \beta \cos \alpha$$

$$\sum_{k=1}^{N} k^2 = \frac{N(N+1)(2N+1)}{6}.$$

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

$$\sum_{k=1}^{N} k^3 = \frac{N^2(N+1)^2}{4}.$$

$$E = mc^2$$

- **1.** (25 points) Fill in the blanks below.
 - **a.** (2 pts) $f(x) = \csc x$ has domain _____ and range _____.
 - **b.** (2 pts) $f(x) = \arccos x$ has domain _____ and range _____.
 - c. (2 pts) Suppose a right triangle has angles of 30° , 60° , and 90° , and that the shortest leg of the triangle is five units long. Then the length of the hypotenuse of this triangle is , and the length of its longest side is .
 - **d.** (2 *pts*) The period of $f(x) = 3 \cot(\pi 2x)$ is _____.
 - e. (2 pts) Which is the largest: (A) an angle of $\frac{\pi}{4}$ radians, (B) an angle of one radian, or (C) the reference angle for $\frac{5\pi}{6}$?

f. (2 *pts*)
$$\lim_{x \to \infty} \frac{e^x}{\sin x} =$$
_____.

g. (3 pts) Write the sum $2 + \frac{2}{4} + \frac{2}{9} + \frac{2}{16} + \frac{2}{25}$ in sigma notation, <u>starting with k = 3</u>:

h. (3 *pts*) If
$$\sum_{k=1}^{4} a_k = 6$$
, $\sum_{k=0}^{4} b_k = 10$, and $a_0 = 2$, then $\sum_{k=0}^{4} (2a_k + 3b_k) =$ _____.

i. (3 pts) If
$$\int_{3}^{0} f(x) dx = -2$$
, $\int_{3}^{4} f(x) dx = 1$, and $\int_{0}^{4} g(x) dx = 5$,
then $\int_{0}^{4} (f(x) + 2g(x)) dx =$ _____.

j. (4 pts) If $\sum_{k=0}^{2} \ln(5 + \frac{k}{3})(\frac{1}{3})$ is a Left Hand Sum, then we must have: $f(x) = \underline{\qquad}, N = \underline{\qquad}, \Delta x = \underline{\qquad}, a = \underline{\qquad}, and b = \underline{\qquad}.$ **2.** (8 points) Use the sum formula for cosine and a Pythagorean identity to prove the trigonometric identity $\cos(2\theta) = 1 - 2\sin^2\theta$.

3. (10 points) Consider the graph of f(x) shown below.

a. (5 pts) Find a function of the form $f(x) = A\sin(B(x+C)) + D$ that has this graph.

b. (5 pts) Find a function of the form $f(x) = A\cos(B(x+C)) + D$ that has this graph.

4. (10 points) Find $\lim_{x\to 0} \frac{\sin^2 3x}{2x^2}$ two ways:

a. (5 pts) Using L'Hôpital's Rule.

b. (5 pts) Without using L'Hôpital's Rule.

- 5. (10 points) Find the derivatives below. Do not simplify your answers.
 - a. (5 pts) $\frac{d}{dx}(\sec(\tan x))$

b. (5 pts)
$$\frac{d}{dx}(\sin^{-1}(1+x-x^2))$$

6. (7 points) Find the domain of the function $f(x) = \frac{x}{1 + \cos x}$.

7. (15 points) Calculate each of the following values exactly. Do not use a calculator. Your work in each problem should be supported by an angle shown in the unit circle, and a triangle with side lengths written on it.

a. (5 *pts*) Find $\sin(-\frac{7\pi}{6})$.

b. (5 *pts*) Find $\sec^{-1}(-2)$.

c. (5 *pts*) Given that $\sin \theta = \frac{1}{5}$ and $\tan \theta < 0$, find $\cos \theta$.

8. (15 points) Consider the definite integral $\int_0^2 x^2 dx$.

a. (3 pts) Approximate this definite integral using a Right Hand Sum with N = 4 rectangles. Draw the rectangles on the graph below.

b. (3 pts) Use sigma notation to write down the general Right Hand Sum with N rectangles for the definite integral above. Write the sum so that the only letters that appear in the sum are k and N. (Note: N is **not** equal to 4 here; your answer should include the letter N.)

c. (3 pts) Write the sum above as an expression in terms of N (*i.e.* as a simple formula without a "sigma"; you may need a formula from the front page).

d. (3 *pts*) Use your answer above to approximate the definite integral above with N = 1000 rectangles.

e. (3 pts) Find the *exact* value of the definite integral by taking the limit as $N \to \infty$ of the expression you found above.

Survey Questions: (worth 2 extra credit points)

Name a question or topic that could have been on this test, but wasn't.

How do you think you did?

SCRAP WORK