TEST I

Name: \qquad

Read all of the following information before starting the exam:

- Show all work, clearly and in order. You will not get full credit if I cannot see how you arrived at your answer (even if your final answer is correct).
- Make sure that you follow the directions in each problem and that your answer matches what is asked for.
- Justify your answers algebraically whenever possible. For most problems, work done by calculator will not receive any points (although you may use your calculator to check your answers).
- Please keep your written answers brief; be clear and to the point. I will take points off for rambling and for incorrect or irrelevant statements.
- This test has seven problems and is worth 100 points, plus some extra credit at the end. Make sure that you have all of the pages!
- Good luck!

1. (10 pts) Determine whether each of the following statements are true or false.
a. (2 pts) $\mathbf{T} \quad \mathbf{F}$ Every exponential function has a horizontal asymptote at $y=0$.
b. (2 pts) $\mathbf{T} \quad \mathbf{F}$ The quotient of two algebraic functions is itself an algebraic function.
c. (2 pts) $\mathbf{T} \quad \mathbf{F} \quad$ For any positive real number x we have $\ln \left(3 e^{x}\right)=3 x$.
d. (2 pts) $\mathbf{T} \quad \mathbf{F} \quad$ If $f(u(v(x)))$ is the composition of three functions, then its derivative is given by $\frac{d f}{d x}=\frac{d f}{d u} \frac{d u}{d v} \frac{d v}{d x}$.
e. (2 pts) $\mathbf{T} \quad \mathbf{F} \quad$ If $0<k<1$ then $f(x)=e^{k x}$ is an exponential decay function.
2. (20 pts) Fill in the blanks or give short answers, as appropriate.
a. (4 pts) $f(x)$ is an exponential function if and only if:
\qquad is proportional to \qquad .
b. (4 pts) $f(x)$ is an exponential function if and only if: $f(x)$ has a constant \qquad .
c. (4 pts) The function $f(x)=3 e^{x+2}$ can be written in the form $f(x)=A b^{x}$ with:

$$
A=\ldots, \quad b=
$$

d. (4 pts) The natural exponential function is continuous at zero. Write this statement as a limit.
e. (4 pts) Complete the following statement using limits. A function $f(x)$ has a vertical tangent line at $x=c$ if:
3. (24 pts) Calculate the following limits. Show all work so I can see how you arrived at your answer, and circle your final answers. (No calculators except to check your answers.)
a. (6pts) $\lim _{x \rightarrow \infty} \frac{2}{4+e^{-2 x}}$
b. (6 pts) $\lim _{x \rightarrow 0} \frac{x^{\frac{7}{2}}-x^{\frac{8}{3}}}{x^{2}}$
c. $(6$ pts $) \lim _{x \rightarrow 3} \frac{2^{x}-8}{3-x}$
d. (6 pts) $\lim _{x \rightarrow \infty} \frac{3^{x}}{5+7\left(2^{x}\right)}$
4. (8 pts) Prove that if $k<0$, then the graph of $f(x)=e^{k x}$ is always decreasing and concave up. (Hint: Use derivatives somehow. Also, remember you are writing a proof here, so make sure that your argument is very clear.)
5. (12 pts) Suppose a quantity $Q(t)$, with t measured in years, increases by 4% each year.
a. (6 pts) Find a formula for $Q(t)$.
b. (6 pts) What is the exact doubling time of the quantity $Q(t)$?
6. (8 pts) If $f(x)=x e^{x}$, construct number lines for f, f^{\prime}, and $f^{\prime \prime}$. (Your number lines should be marked at the zeros and DNE points of each function, and should have + or - marked in each subinterval.)
7. (18 pts) Find each of the following derivatives. Circle your final answers.
a. (6 pts $)$ If $f(x)=\frac{3 x+1}{\sqrt{x^{3}-27 x+4}}$, find $f^{\prime}(x)$.
b. (6 pts) If $f(x)=2^{x^{3}+4}$, find $f^{\prime}(1)$.
c. $(6 \mathrm{pts})$ If $y=y(x)$ is a function of x, and $3 y^{2}=4+x y$, find $\frac{d y}{d x}$.

Survey Questions: (2 extra credit points)
Name a question or topic that could have been on this test, but wasn't.

How do you think you did?

SPACE FOR SCRAP WORK

