TEST II

Math 232
March 25, 2003

Name:

By writing my name I swear by the honor code.

Read all of the following information before starting the exam:

- Show all work, clearly and in order. You will not get full credit if I cannot see how you arrived at your answer (even if your final answer is correct).
- Make sure that you follow the directions in each problem and that your answer matches what is asked for.
- Justify your answers algebraically whenever possible. For most problems, work done by calculator will not receive any points (although you may use your calculator to check your answers).
- Please keep your written answers brief; be clear and to the point. I will take points off for rambling and for incorrect or irrelevant statements.
- This test has 8 problems and is worth 100 points, plus some extra credit at the end. Make sure that you have all of the pages!
- Good luck!

1. (8 pts) Determine whether each of the following statements are true (T) or false (F).
a. (2pts) $\quad \mathbf{T} \quad \mathbf{F} \quad \frac{\log _{7} a}{\log _{7} b}=\log _{7} a-\log _{7} b$.
b. (2 pts) $\mathbf{T} \quad \mathbf{F} \quad 1-\csc ^{2} \theta=\cot ^{2} \theta$.
c. $\left(\begin{array}{lll}2 p t s & \text { T } & \mathbf{F}\end{array}\left(\sum_{k=1}^{n} \frac{1}{k+1}\right)\left(\sum_{k=1}^{n} k^{5}\right)=\sum_{k=1}^{n} \frac{k^{5}}{k+1}\right.$
d. (2 pts) $\mathbf{T} \quad \mathbf{F} \quad$ There are exactly two angles whose sine is $-\frac{1}{4}$.
2. (18 pts) Fill in the blanks. (Hint: The first three blanks should be filled in with numbers.)
a. (3 pts) $\sin ^{-1}\left(\sin \left(\frac{3 \pi}{4}\right)\right)=$ \qquad .
b. (3 pts) $\sum_{k=1}^{1000} \frac{k}{n^{2}}=$ \qquad .
c. (3 pts) If $\sum_{k=1}^{4} a_{k}=7, \sum_{k=0}^{4} b_{k}=10$, and $a_{0}=2$, then $\sum_{k=0}^{4}\left(2 a_{k}+3 b_{k}\right)=$ \qquad
d. (3 pts) The domain of $f(x)=\sqrt{\ln x}$ is: \qquad .
e. (3 pts) The domain of $f(x)=\sec x$ is: \qquad .
f. (3 pts) The domain of $f(x)=\sin ^{-1} x$ is: \qquad .
3. (24 pts) Find each of the following limits. Show all work. (Hint: The last limit requires quite a bit of work.)
a. (8 pts) $\lim _{x \rightarrow 0} \frac{3 x}{\sin 2 x}$ (do this without using L'Hôpital's rule)
b. (8 pts) $\lim _{x \rightarrow \infty} \frac{\cos \left(\tan ^{-1} x\right)}{x}$
c. $(8 \mathrm{pts}) \lim _{x \rightarrow 0^{+}}(\csc x)^{x}$
4. (8 pts) Use the fact that $\sin x$ is an even function and $\cos x$ is an odd function to prove that $f(x)=\cot x$ is an odd function.
5. (8 pts) Find the coordinates (x, y) where the terminal edge of $\theta=-\frac{5 \pi}{6}$ meets the unit circle. Your work should include a picture of the angle in the unit circle and a triangle with labelled sides.
6. (8 pts) Approximate the area between the graph of $f(x)=x^{2}$ and the x-axis from $x=3$ to $x=5$ using four rectangles and the Midpoint Sum. Show your work clearly. You will get partial credit for a correct picture of the rectangles you are using. (Hint: Fancy notation is not necessary here.)
7. (24 pts) Find the derivatives of the following functions. Show any relevant work. (Hint: The last derivative requires more work than the first two.)
a. (8 pts) $f(x)=\csc ^{2}\left(3^{x}\right)$
b. (8 pts) $f(x)=\ln \left|\sin ^{-1}\left(x^{2}\right)\right|$
c. $(8$ pts $) \quad f(x)=(\ln x)^{x}$
8. (2 pts) Write whatever you like in this box:

Survey Questions: (2 extra credit points)
Name a question or topic that could have been on this test, but wasn't.

How do you think you did?

SPACE FOR SCRAP WORK

