TEST III

Math 232
April 22, 2003

Name:
By writing my name I swear by the honor code.

Read all of the following information before starting the exam:

- Show all work, clearly and in order. You will not get full credit if I cannot see how you arrived at your answer (even if your final answer is correct).
- Make sure that you follow the directions in each problem and that your answer matches what is asked for.
- Justify your answers algebraically whenever possible. For most problems, work done by calculator will not receive any points (although you may use your calculator to check your answers).
- Please keep your written answers brief; be clear and to the point. I will take points off for rambling and for incorrect or irrelevant statements.
- This test has 8 problems and is worth 100 points, plus some extra credit at the end. Make sure that you have all of the pages!
- Good luck!

1. (14 pts) Determine whether each of the following statements is true (T) or false (F).
a. (2 pts) $\quad \mathbf{T} \quad \mathbf{F} \quad \int_{-2}^{5}(x+2)^{3} d x$ is a real number.
b. (2 pts) $\mathbf{T} \quad$ F $\quad \int \frac{1}{x^{2}+1} d x=\frac{1}{2 x} \ln \left|x^{2}+1\right|+C$.
c. (2 pts) $\quad \mathbf{T} \quad \mathbf{F} \quad$ If $u=x^{2}+1$, then $\int \sqrt{x^{2}+1} d x=\int \sqrt{u} d u$.
d. (2pts) $\mathbf{T} \quad \mathbf{F} \quad \int_{0}^{3} x e^{x} d x=x e^{x}-\int_{0}^{3} e^{x} d x$.
e. (2 pts) $\quad \mathbf{T} \quad \mathbf{F} \quad \int \sin ^{2} x d x=\frac{1}{2} \int(1-\cos 2 x) d x$.
f. (2pts) $\quad \mathbf{T} \quad \mathbf{F} \quad \int \sin x d x=-\cos x+C$.
g. (2 pts) $\mathbf{T} \quad \mathbf{F} \quad$ An approximation of the arc length of $f(x)=\sin x$ on $[0, \pi]$ with six line segments will be an underapproximation.
2. (16 pts) Short answer and fill-ins.
a. (8 pts) State the Fundamental Theorem of Calculus.
b. (8 pts) The definite integral of a continuous function $f(x)$ from $x=a$ to $x=b$ is defined to be:

$$
\int_{a}^{b} f(x) d x:=\lim \sum \square \square \square \square
$$

where $\Delta x=$ \qquad , $x_{k}=$ \qquad , and $x_{k}^{*} \in$ \qquad .
3. (10 pts) Use integration techniques to find the exact value of $\int_{0}^{\frac{\pi^{2}}{4}} \frac{\cos \sqrt{x}}{\sqrt{x}} d x$.
(Don't touch your calculator, even at the end of your calculation. Do all work by hand and show your work carefully.)
4. (10 pts) Prove that $\int \sec x d x=\ln |\sec x+\tan x|+C$.
5. (2 pts) Write your favorite math symbol in this box:
6. (12 pts) Fill in each blank with one of the seven choices below. (You might have to use some choices more than once; in other words, some parts might have the same answer.)

Choices: $\quad f(b)-f(a) \quad f^{\prime}(b)-f^{\prime}(a) \quad f(x)-f(a) \quad f^{\prime}(x)-f^{\prime}(a) \quad f(x) \quad f^{\prime}(x) \quad 0$

$$
\begin{array}{rlrl}
\int_{a}^{b} f^{\prime}(x) d x & =\square & \frac{d}{d x} \int_{a}^{x} f(t) d t & = \\
\frac{d}{d x} \int_{a}^{b} f(x) d x & =\square
\end{array}
$$

7. (16 pts) Represent each of the following in terms of integrals.

DON'T SOLVE THE INTEGRALS, JUST WRITE THEM DOWN.

a. (4 pts) The "true" area between the graph of $f(x)=x^{2}-4$ and the x-axis on $[0,3]$ (counting all area positively).
b. (4 pts) The average value of $f(x)=x^{2}-4$ on $[0,3]$.
c. (4 pts) The arc length of $f(x)=x^{2}-4$ on $[0,3]$.
d. (4 pts) The function whose value at x is the area under the graph of $f(x)=x^{2}-4$ from 0 to x.
8. (20 pts) For each integral given below, one of the four integration strategies will work. Circle it.
a. (4 pts) $\int \frac{x^{3}+4}{x^{2}} d x$
I. Substitution with $u=x^{3}+4$
II. Use formulas to get $\frac{\frac{1}{3} x^{3}+4 x}{\frac{1}{4} x^{4}}+C$
III. Rewrite with algebra, then use formulas
IV. Use formulas to get $\frac{3 x^{2}\left(x^{2}\right)-\left(x^{3}+4\right)(2 x)}{x^{4}}$
b. (4 pts) $\int \cos ^{3} x d x$
I. Parts with $u=\cos ^{3} x, d v=d x$
II. Half-angle formulas
III. Pythagorean identity, then $u=\cos x$
IV. Pythagorean identity, then $u=\sin x$
c. (4 pts) $\int \frac{\ln 2 x}{x^{2}} d x$
I. Subsitution with $u=x^{2}$
II. Parts with $u=x^{2}, d v=\ln 2 x d x$
III. Parts with $u=\ln 2 x, d v=x^{2} d x$
IV. Parts with $u=\ln 2 x, d v=x^{-2} d x$
d. (4 pts) $\int \csc ^{4} x \cot ^{4} x d x$
I. Pythagorean identity, then $u=\csc x$
II. Pythagorean identity, then $u=\cot x$
III. Parts with $u=\csc ^{4} x, d v=\cot ^{4} x d x$
IV. Parts with $u=\csc ^{2} x \cot ^{4} x, d v=\csc ^{2} x d x$
e. (4 pts) $\int \sec ^{3} x d x$
I. Pythagorean identity, then $u=\sec x$
II. Pythagorean identity, then $u=\tan x$
III. Parts with $u=\sec x, d v=\sec ^{2} x d x$
IV. Parts with $u=\sec ^{2} x, d v=\sec x d x$

Survey Questions: (2 extra credit points)
Name a question or topic that could have been on this test, but wasn't.

How do you think you did?

SPACE FOR SCRAP WORK

