232	•	•
131	 1117	1

C. Stranger		
September	9,	2011.

Name: * Key * VZ

Section:

Name:

Work with your partner on each problem; do not split up problems or tasks. You must discuss each problem together and agree on a final solution. Hand in one quiz per group.

You may use your hand-written Notebooks but no other materials and no technology at all. Please keep your discussions quiet so as not to disturb or inform other groups.

1. If a quantity triples every 15 years, what is its yearly percentage growth rate? Show all work clearly and in order.

$$\begin{cases} y \text{ or: } |5\ln(1+r) = \ln 3 \\ \ln(1+r) = \ln 3 \\ |1+r| = \ln 3/15 \end{cases}$$

note k= 2n3 is the continuous growth rate; starting 1/this and converting to yearly gives yearly rate r= en3-1 (equivalent)

2. Use implicit differentiation and the fact that $\log_2 x$ is the inverse of 2^x to prove that $\frac{d}{dx}(\log_2 x) = \frac{1}{(\ln 2)x}$. Make sure that all of your steps are clear.

$$\Rightarrow \frac{1}{dx} \left(2^{\log_2 x} \right) = \frac{d}{dx} (x)$$

$$\Rightarrow \frac{d}{dx}(\log_2 x) = \frac{1}{(\ln 2) 2^{\log_2 x}} = \frac{1}{(\ln 2) x}$$
. \square