232 TEST 2

You may use your notebook during the last fifteen minutes of this exam. You may NOT use calculators, cell phones, loose papers, or peeking.

Math 232October 20, 2011

Name: _______By printing my name I pledge to uphold the honor code.

- 1. For each problem CIRCLE all that apply, and CROSS OUT all that do not apply. If you do nothing on an item I will assume that you meant to cross it out. Problems could possibly have one, many, or no answers to circle.
 - a) Which of the following are true statements?

 $\sin^{-1}\frac{1}{2} = \frac{\pi}{6}$ $\sec^{-1}x = \cos x$ $\sec^{-1}x = \frac{1}{\cos^{-1}x}$ $\tan^{-1}0$ is undefined

b) Which of the following is a 20-rectangle Right Sum approximation for $\int_2^6 f(x) dx$?

$$\sum_{k=1}^{20} f(2 + \frac{k}{100})(0.01) \qquad \sum_{k=1}^{20} f(2 + \frac{k}{10})(0.01) \qquad \sum_{k=1}^{20} f(2 + \frac{k}{100})(0.1) \qquad \sum_{k=1}^{20} f(2 + \frac{k}{10})(0.1)$$

c) Which of the following can we integrate using the techniques covered so far in class?

$$\int \frac{1}{1+x} dx \qquad \int \frac{1}{1+x^2} dx \qquad \int \frac{x}{1+x} dx \qquad \int \frac{x}{1+x^2} dx \qquad \int \frac{x^2}{1+x} dx$$

d) Which of the following are equivalent to the Fundamental Theorem of Calculus?

$$\left[\int G'(x) \, dx\right]_a^b = \int_a^b G(x) \, dx \qquad \int_a^b f''(x) \, dx = [f'(x)]_a^b \qquad \int_a^b h(x) \, dx = [h'(x)]_a^b$$

2. Write down the *n*-rectangle Right Sum approximation for $\int_2^4 (x^2 + 1) dx$ and simplify until that the only letters that appear in the sum are k and n. *Please do NOT try to calculate the sum; just write it down.*

- **3.** In each problem write the quantity described in terms of one or more definite integrals. *Please do NOT try to solve the definite integrals; just write them down.*
 - a) The area between the graphs of $\sin x$ and $\cos x$ on the interval $[0, \pi]$.

b) The unsigned area of the region between the graph of $f(x) = 4x^2 + 4x - 3$ and the *x*-axis on the interval [-2, 2].

c) The change in temperature, after 10 minutes, of a hot potato that is cooling at a rate of $T'(t) = -15e^{-0.5t}$ degrees per minute.

STRESSED OUT? DRAW EXTREMELY TINY ANIMALS IN THE BRACKETS: $\langle \rangle \langle \rangle \langle \rangle \langle \rangle \langle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \rangle$