Math 232
February 10, 2012

Name:

By printing my name I pledge to uphold the honor code.

1. Determine whether each of the following is True (T) or False (F).

 (similar to #1 in 5.1–5.5 and 6.1–6.4)

 T F There are only two angles whose sine is \(-\frac{1}{4}\).

 T F \(f(x) = 50 - 2^x\) has a horizontal asymptote at \(y = 50\).

 T F If \(\sin^{-1} x = \theta\) then \(\sin \theta\) is greater than or equal to zero.

 T F If \(Q(t)\) is exponential with continuous growth rate \(k\), then \(Q'(t) = kQ(t)\).

 T F \(3(2^x)\) is equal to \(6^x\).

 T F \(\ln x = \frac{1}{x}\).

 T F If \(\lim_{h \to 0} \frac{b^h - 1}{h} = 1\), then \(b = e\).

 T F If \(\lim_{x \to 2} \ln(f(x)) = 0\), then \(\lim_{x \to 2} f(x) = 1\).

 T F To find the derivative of \(\tan x\) we had to use the definition of derivative.

 T F The graph of \(\csc x\) has vertical asymptotes at \(x = k\pi\), for any integer \(k\).

2. Circle ALL of the following that are greater than 1, and cross out the others.

 (similar skills as #29–36 in 5.1, #67-70 in 6.1, and #23–38 in 6.4)

 A) \(\tan\left(\frac{\pi}{13}\right)\) B) \(e^{0.5}\) C) \(\ln 3 - \ln 2\) D) \(\sec^{-1}(-1)\)

3. Circle ALL of the following limits that are initially in some indeterminate form, before any algebra or rewriting of any kind, and cross out the rest.

 (basic skills in #23–68 in 5.2, TB in 5.5, #23–42 in 6.3, and #45–52 in 6.4)

 A) \(\lim_{x \to 0} (1 + x)^{\frac{3}{x}}\) B) \(\lim_{x \to \infty} \frac{x^3}{\tan^{-1} x}\) C) \(\lim_{x \to 0^+} \frac{x}{\ln x}\) D) \(\lim_{x \to \infty} x^{\ln x}\)
4. Fill in the blanks to complete each statement.
(basic skills in #23–68 in 5.2, #17–44 in 5.3, #23–62 in 6.3, and #45–66 in 6.4)

\[\lim_{x \to \frac{\pi}{2}^-} \sec x = \quad \frac{d}{dx}(\sec^2 x) = \]

\[\lim_{h \to 0} (1 + h)^\frac{1}{h} = \quad \frac{d}{dx}(\ln |x|) = \]

\[\lim_{x \to 0^+} \csc 3x = \quad \frac{d}{dx}(2^{3x+1}) = \]

\[\lim_{x \to 0} \tan^{-1} x = \quad \frac{d}{dx}(\sin^{-1}(x^3)) = \]

\[\lim_{x \to 0} \frac{2}{4 + e^{-2x}} = \quad \frac{d}{dx}(\ln(x^5 + 1)) = \]

5. Circle ALL of the following that are equal to \(\frac{\tan^{-1} x}{\sin^{-1} x} \), and cross out the rest.
(similar skills as #51 in 6.4)

A) \(\cot x \csc x \) B) \(\left(\frac{\tan x}{\sin x} \right)^{-1} \) C) \(\frac{\sin x}{\tan x} \) D) \(\arctan x \arcsin x \)

6. Circle ALL of the following that FAIL to be in the domain of \(f(x) = \frac{1}{\sqrt{\ln(x-2)}} \), and cross out the rest.
(similar to #43 in 5.1)

A) \(x = 0 \) B) \(x = 1 \) C) \(x = 2 \) D) \(x = 3 \)

7. Circle ALL of the following that are valid trigonometric identities, and cross out the rest.
(similar to #5–8, #9–12, and #44-49 in 6.2)

A) \(\csc(-\theta) = -\csc(\theta) \) C) \(\sin \theta \cos \theta = 1 + \cos \theta \)

B) \(2 \sin^2 \theta - \cos 2\theta = 1 \) D) \(1 - \cos^2 \theta = \sin^2 \theta \)

8. Circle the ONE answer that is equal to \(\lim_{x \to \frac{\pi}{2}^-} \frac{\sin(cos x)}{\cos x} \), and cross out the rest.
(similar to #15 in chapter 6 review)

A) \(-1 \) B) \(1 \) C) \(\infty \) D) \(0 \)
sCRAP

(I will not be grading anything on the scrap page but you must hand it in with your name on it)

STRESSED OUT?
TAKE A BREAK TO COLOR INFINITY: ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞