
Delta-Epsilon Proofs Math 235 Fall 2000

Delta-epsilon proofs are used when we wish to prove a limit statement, such as

lim
x→2

(3x− 1) = 5. (1)

Intuitively we would say that this limit statement is true because as x approaches 2, the
value of (3x − 1) approaches 5. This is not, however, a proof that this limit statement is
true. By the formal definition of limit (see the previous handout), to prove (1) is true we
must show that:

For all ε > 0, there exists a δ > 0 such that:
If 0 < |x− 2| < δ, then |(3x− 1)− 5| < ε.

In other words, given any positive number ε, we must show that there exists a positive
number δ so that whenever the distance between x and 2 is less than δ, the distance
between (3x − 1) and 5 is less than ε. Said another way, given ε > 0, we need to find a
δ > 0 so that if 2− δ < x < 2 + δ (but x 6= 2), then 5− ε < 3x− 1 < 5 + ε.

Finding Delta for a particular Epsilon
For example, if we let ε be .5, then δ = .16 will work: if |x−2| < .16 (i.e. if 1.84 < x < 2.16),
then |(3x − 1) − 5| < .5 (i.e. then 4.5 < (3x − 1) < 5.5). Check this and draw a picture!
Note that there are other values of δ that would work for ε = .5 (can you find one?), so this
answer is not unique. Also, if we chose a different ε, say ε = .1, then we’d need another,
smaller value of δ (can you find one?).

To prove statement (1) we must show that for each value of ε there is some value of δ that
will work; to do this we will find an expression for δ in terms of ε (in other words, a formula
that will find a working δ given any choice of ε).

Finding Delta in terms of Epsilon
Given ε > 0 we have to find a δ > 0 so that if 0 < |x − 2| < δ, then |(3x − 1) − 5| < ε.
In other words, we want to choose a δ so that information about |x − 2| will give us the
desired result about |(3x − 1) − 5|. It’s not clear at the outset what this δ should be, but
if we start manipulating |(3x− 1)− 5| we’ll soon find a value of δ that will work. Consider
the calculation:

|(3x− 1)− 5| = |3x− 1− 5| = |3x− 6| = |3(x− 2)| = 3|x− 2|.

What do we know about |x − 2|? We know it is less than δ (whatever we choose δ to be,
we’ll have 0 < |x − 2| < δ by hypothesis). Using this fact and the calculuation above, we
have:

|(3x− 1)− 5| = · · · = 3|x− 2| < 3δ.

What we wanted was to make |(3x − 1) − 5| less than the given ε. What we managed to
show was that |(3x− 1)− 5| is less than 3δ. Now can you see what we should take δ to be?
If we choose δ = ε/3 (note this depends on ε, as we suspected), then the calculation above
becomes:

|(3x− 1)− 5| = · · · = 3|x− 2| < 3δ = ε,



and thus we have shown that, if 0 < |x− 2| < δ = ε/3, then |(3x− 1)− 5| is less than ε.

Thus, for example, if we want (3x − 1) to be within .5 of 5 (so ε = .5), we can take
δ = .5/3 = 1/6 = .166̄. If we want (3x − 1) to be within .1 of 5 (so ε = .5), we can take
δ = .1/3 = .033̄. The formula δ = ε/3 works for any choice of ε > 0 in this example.

A Delta-Epsilon Proof
We’ve now done all the legwork involved in proving that the statement

lim
x→2

(3x− 1) = 5

is true. To write it in a proof we just have to write down our ideas clearly and concisely.
Remember, we’re trying to prove that:

For all ε > 0, there exists a δ > 0 such that:
If 0 < |x− 2| < δ, then |(3x− 1)− 5| < ε.

Thus we must first let ε be an arbitrary positive number; then given that ε we must find an
expression for δ (usually in terms of ε). Given this δ we then assume that 0 < |x− 2| < δ,
and use this to prove that |(3x− 1)− 5| < ε. (Recall that if we want to show “If A, Then
B”, we have to assume that A is true and then prove that B is true.)

Delta-epsilon proofs always follow the same format. The delta-epsilon proof for the example
we have been working on is:

Proof: Let ε > 0.

Choose δ = ε/3 .

If 0 < |x− 2| < δ,

Then |(3x− 1)− 5| = |3x− 6|
= |3(x− 2)|
= 3|x− 2|
< 3δ (by hypothesis)
= 3(ε/3) (since we chose δ = ε/3)
= ε;

Thus we have |(3x− 1)− 5| < ε.

Note that we “choose” δ on the second line of the proof, even though if we haven’t yet done
the calculuation in the proof we don’t know what we should choose δ to be. When you’re
doing one of these proofs, just write “Choose ” and fill in an appropriate expression
for δ when you discover what works. (In the proof above, we don’t discover what δ will
work until the second-to-last statement in the computation.)

Make sure you understand not only how to put one of these kinds of proofs together, but why
they prove what they do. In other words, compare this proof to the statement it purports
to prove (the formal definition of limit in a particular example, as above); make sure you
understand why the process outlined above proves that the limit statement is true.


