TEST III

Math 236 April 19, 2001

Name: ____

By writing my name I swear by the honor code.

Read all of the following information before starting the exam:

- Circle or otherwise indicate your final answers.
- Show all work, clearly and in order. I will take off points if I cannot see how you arrived at your answer (even if your final answer is correct).
- Justify your answers algebraically whenever possible. For most problems, work done by calculator will <u>not</u> receive any points (although you may use your calculator to check your answers).
- When you do use your calculator, sketch all relevant graphs and explain how you use them.
- Please keep your written answers brief; be clear and to the point. I will take points off for rambling and for incorrect or irrelevant statements.
- This test has 9 problems and is worth 100 points, plus some extra credit at the end and for drawing a tree on the scrap page. Make sure that you have all of the pages!
- Good luck!

1. (10 points) Find the sum of the series $\sum_{k=1}^{\infty} \frac{1}{k^2 + 3k + 2}$. Show your work clearly and in order.

2. (10 points) Fill in the boxes with the appropriate mathematical statements.

A sequence $\{a_n\}$ is *nondecreasing* if

 (\mathbf{a})

(b) If *L* is the least upper bound of a set *S* and ϵ is any positive number, then there exists at least one *x* in *S* such that $\boxed{}$. (c) An definite integral $\int_{a}^{b} f(x) dx$ is a *proper* integral (*i.e.* not an improper integral) if and $\boxed{}$.

(e) The Integral, Comparison, Limit Comparison, Root, and Ratio Tests all require that the terms of $\sum a_k$ be

3. (20 points) Determine if the following series converge or diverge. Justify each of your answers.

a. (5 *pts*)
$$\sum \left(\frac{1}{k}\right)^2$$

b. (5 *pts*)
$$\sum \frac{1}{2^k}$$

c. (10 pts)
$$\sum \frac{3^{2k}}{(2k)!}$$

4. (10 points) Let $\sum a_k$ be an infinite series with sequence of terms $\{a_k\}$ and sequence of partial sums $\{s_n\}$. Circle True (**T**) or False (**F**) for each of the statements below.

- (a) T F If {s_n} diverges, then ∑a_k diverges.
 (b) T F If {s_n} converges to 4, then ∑a_k converges to 4.
 (c) T F If ∑a_k diverges then {a_k} diverges.
- (d) **T F** If $\{a_k\}$ does not converge to 0, then $\{s_n\}$ diverges.
- (e) **T F** If $\sum |a_k|$ diverges, then $\sum a_k$ diverges.

5. (10 points) Determine if the series $\sum_{k=2}^{\infty} \frac{1}{k(\ln k)^3}$ converges or diverges. Show all work.

6. (14 points) Let $\sum a_k$ be a series with nonnegative terms. Circle True (**T**) or False (**F**) for each of the statements below.

(\mathbf{a})	Т	\mathbf{F}	If $\lim_{k \to \infty} (a_k)^{\frac{1}{k}} = 2$, then $\sum a_k$ diverges.
(\mathbf{b})	Т	\mathbf{F}	If $\lim_{k \to \infty} a_k = 0$, then $\sum a_k$ converges.
(\mathbf{c})	т	\mathbf{F}	If $\lim_{k \to \infty} \frac{a_k}{1/k} = 1$, then $\sum a_k$ diverges.
(\mathbf{d})	Т	\mathbf{F}	If $\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = 0$, then $\sum a_k$ converges.
(\mathbf{e})	Т	\mathbf{F}	If $\lim_{k \to \infty} (a_k)^{\frac{1}{k}} = 1$, then $\sum a_k$ converges.
(\mathbf{f})	т	\mathbf{F}	If $\lim_{k \to \infty} \frac{a_k}{(.5)^k} = 0$, then $\sum a_k$ converges.
(\mathbf{g})	Т	\mathbf{F}	If $\lim_{k \to \infty} \frac{a_{k+1}}{a_k} = \frac{1}{2}$, then $\sum a_k$ converges.

7. (10 points) Is the sequence $\{(k^3+1)^{\frac{1}{\ln k}}\}$ convergent (assume $k \ge 2$)? If so, what does it converge to? If not, why not? Justify your answer.

8. (8 points) Suppose $\{a_k\}$ is a sequence of real numbers. Circle True (**T**) or False (**F**) for each of the statements below.

- (a) **T F** If $\{a_k\}$ is bounded, then it is convergent.
- (b) **T F** If $\{a_k\}$ is not bounded, then it is divergent.
- (c) **T F** If $\{a_k\}$ is convergent and bounded above then it converges to its *lub*.
- (d) **T F** If $\{a_k\}$ is bounded and nonincreasing then it converges to its *glb*.

9. (8 points) Suppose $\sum a_k$ and $\sum b_k$ are infinite series with the property that $0 \le a_k \le b_k$ for all k. Circle True (**T**) or False (**F**) for each of the following statements.

- (a) **T F** If $\sum a_k$ converges, then $\sum b_k$ converges.
- (b) **T F** If $\sum b_k$ diverges, then $\sum a_k$ converges.
- (c) **T F** If $\sum a_k$ diverges, then $\sum b_k$ diverges.
- (d) $\mathbf{T} \quad \mathbf{F} \quad \text{I hate True/False questions.}$

Survey Question (2 Extra Credit Points):

How did you do on this test? Which question was the hardest?

SCRAP WORK