Work on your own with only your notebook.

1. Fill in the table below for each sequence. The first sequence is done for you as an example. If a sequence fails to be monotonic you can write "not monotonic." If a sequence has no least upper bound you can write "no *lub*," and similarly for greatest lower bounds. You do not need to show your work. Don't be afraid to *think*.

Sequence	(Eventually? Strictly?) Increasing/Decreasing?	Least Upper Bound? Greatest Lower Bound?	Diverges? Converges? (to what?)
$\left\{\frac{k}{k+1}\right\}$	always strictly increasing	$lub = 1, \ glb = \frac{1}{2}$	converges to 1
$\left\{\frac{k!}{10^k}\right\}$	eventually strictly increasily	IUG = NONE(skip glb)	diverges
$\left\{\frac{k^2}{k!}\right\}$	strictly	106=2 516=0	converges to 0
$\left\{\frac{(k!)^2}{(2k)!}\right\}$	always streethy decreasity	10b=1/2 31b=0	converges to 0
$\left\{\cos(\frac{\pi}{2}k)\right\}$	notomic	J16 = -1	diverges
$\left\{k^{\frac{2}{k}}\right\}$	eventually strictly decreasing	$(10b = 3^{2/3})(skip glb)$ $31b = 1$	converges to 1
(k ⁴ k)	2	FREE	

per block while your whee)