236 Quiz 6

March 22, 2011

Name _____ * key *

By printing my name I pledge to uphold the Honor Code.

Work on your own with only your notebook.

1. Explain what you would have to show to prove that the series

$$\sum_{k=1}^{\infty} \frac{k}{3^k}$$

converges, using each of the three tests listed below. You do NOT actually have to perform the tests, just describe what needs to be done.

a) Integral Test

 \triangleright would have to solve the improper integral:

$$\int_{3x}^{\infty} \frac{x}{3x} dx = \int_{3x}^{\infty} (\frac{1}{3})^{x} dx$$

> using the integration technique: parts with u=x, dv=(3) dx

> and then make the conclusion that: integral converges, so series converges

b) Comparison Test

> could compare to the series: (one option) ∑(3)

▷ because of this inequality: $\left(\frac{2}{3}\right)^k = \frac{2^k}{3^k} \ge \frac{k}{3^k}$

> and then make the conclusion that: geom. ∑(3) conv. so our series toes to

c) Limit Comparison Test

▷ could compare to the series:

 \triangleright and would have to calculate this limit:

$$\lim_{k\to\infty}\frac{k/3^k}{2^k/3^k}$$

▷ and then make the conclusion that:

limit is a positive number (finite) and geom.
$$\Sigma(\frac{3}{2})^k$$
 converges. So our series toes too.

7 pts