236 TEST 3

You may use your notebook during the last half hour of this exam. You may NOT use calculators, cell phones, loose papers, or peeking.

Math 236April 5, 2011

Name: By printing my name I pledge to uphold the honor code.

- 1. True or false?
 - \mathbf{T} \mathbf{F} Every monotonic sequence of real numbers has either a greatest lower bound, a greatest lower bound, or both.
 - \mathbf{T} \mathbf{F} Every convergent sequence of real numbers is bounded.
 - \mathbf{T} \mathbf{F} Every bounded sequence of real numbers is convergent.
 - **F** If $\sum_{k=1}^{\infty} a_k$ diverges, then $\{a_k\}$ diverges. \mathbf{T}
 - **F** If $\{a_k\}$ converges to 0, then $\sum_{k=1}^{\infty} a_k$ converges. \mathbf{T}
 - **T F** If $\sum_{k=1}^{\infty} a_k$ converges and $\{S_n\}$ is its sequence of partial sums, then $\{S_n\}$ converges.
 - **T F** $\sum_{k=1}^{\infty} (-1)^k a_k$ converges if and only if $\sum_{k=1}^{\infty} (-1)^{k+1} a_k$ converges.

T F If
$$\sum_{k=1}^{\infty} a_k$$
 converges conditionally, then $\sum_{k=1}^{\infty} |a_k|$ diverges.

T F If
$$\sum_{k=1}^{\infty} a_k$$
 and $\sum_{k=1}^{\infty} b_k$ both converge, then $\lim_{k \to \infty} \frac{a_k}{b_k}$ is finite.

2. Circle EVERY description that applies to each sequence or series. You do not need to show any work or describe the tests that you used.

$\left\{\frac{k^2}{(k+1)^2}\right\}$	(monotonic)	(bounded)	(convergent)	(divergent)
$\left\{\frac{(-1)^k}{k-1}\right\}$	(monotonic)	(bounded)	(convergent)	(divergent)
$\left\{\sin(\frac{1}{k!})\right\}$	(monotonic)	(bounded)	(convergent)	(divergent)
$\sum_{k=1}^{\infty} \ln\left(\frac{1}{k^2 + 1}\right)$	(convergent)	(divergent)		
$\sum_{k=1}^{\infty} \left(\frac{k}{k+1}\right)^{k^2}$	(convergent)	(divergent)		
$\sum_{k=1}^{\infty} \frac{\sqrt{k}}{k^2 - 3}$	(convergent)	(divergent)		
$\sum_{k=1}^{\infty} \frac{1}{k(\ln k)^2}$	(convergent)	(divergent)		
$\sum_{k=1}^{\infty} \frac{2^k}{k!}$	(convergent)	(divergent)		
$\sum_{k=1}^{\infty} \frac{(-1)^k k^2}{k!}$	(abs. conv.)	(cond. conv.)	(divergent)	
$\sum_{k=1}^{\infty} \cos^3(\frac{1}{k})$	(abs. conv.)	(cond. conv.)	(divergent)	
$\sum_{k=1}^{\infty} \frac{\cos(\pi k)}{k}$	(abs. conv.)	(cond. conv.)	(divergent)	

3. Find the exact sum of each of the following series. Show your work very carefully.

a)
$$\sum_{k=3}^{\infty} \frac{2^{k+2}}{3^k}$$

$$\mathbf{b)} \quad \sum_{k=1}^{\infty} \frac{9}{k^2 + 3k}$$

Bonus Survey: How did you do? What could have been on this exam, but wasn't?

 $\mathbf{s}\mathbf{CRAP}$

(I will not be grading anything on the scrap page)