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Abstract. Every three-dimensional complex algebraic variety with isolated sin-
gular point has a resolution factoring through the Nash blowup and the blowup
of the maximal ideal over which the second Fitting ideal sheaf is locally principal.
In such resolutions one can construct Hsiang-Pati coordinates and thus obtain
generators for the Nash sheaf that are the differentials of monomial functions.
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1. Introduction

Given a complex analytic three-dimensional variety with isolated singular
point, we show that there exists a resolution over which “Hsiang-Pati coordi-
nates” can be constructed. These Hsiang-Pati coordinates induce generators
of the Nash sheaf that can be written locally as the differentials of certain
monomial functions whose exponents satisfy various ordering and linear in-
dependence conditions. We call such generators “monomial generators” for
the Nash sheaf.

In fact these results hold for any resolution factoring through the Nash
blowup and the blowup of the maximal ideal sheaf over which a certain
Fitting ideal is locally principal (we call such resolutions “complete”, since
no further blowups will be necessary to construct Hsiang-Pati coordinates).
The existence of a resolution satisfying the third condition is nontrivial and
proved here using a theorem of Hironaka’s from [4].

The monomial functions that induce monomial generators for the Nash
sheaf are obtained by extracting distinguished monomial components of
so-called “Hsiang-Pati” coordinates on a complete resolution. The Hsiang-
Pati coordinates are the pullbacks of a generic choice of linear functions
that satisfy various minimality conditions involving the Nash sheaf and its
exterior powers and the inverse image of the maximal ideal sheaf.

Hsiang and Pati showed in [6] that, in the case where V is an analytic
surface with isolated singular point, these coordinates can be obtained by
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repeatedly blowing up V and taking appropriate changes of coordinates as
necessary. Pati generalizes this result to the three-dimensional case in [14].
In these papers, however, it is neither clear what resolution will eventually
be sufficient for these coordinates to be in the correct form, nor how these
coordinates relate to the Nash sheaf.

Pardon and Stern give a more conceptual, geometric view of this pro-
cess (in the two-dimensional case) in [12], showing that instead of repeated
blowups we can take any resolution that factors through the Nash blowup
and the blowup of the maximal ideal. In such a resolution a generic choice of
linear functions that satisfy certain conditions involving the maximal ideal
and the Nash sheaf will pull up to be Hsiang-Pati coordinates.

The results here are thus a generalization of the results of Pardon and
Stern to the three-dimensional case. In other words, we provide a more
conceptual view of Pati’s three-dimensional results (a view which in addition
seems to have a clear generalization to the n-dimensional case). In the three-
dimensional case a complete resolution must satisfy the same conditions as
in Pardon and Stern’s two-dimensional case, with the additional property
that a particular Fitting ideal must be locally principal. This additional
property makes the problem of finding a complete resolution nontrivial in
the three-dimensional case.

Note that in [6] and [14] the resolution is obtained by repeated blowups
as become necessary in the process of constructing the Hsiang-Pati coordi-
nates. Here (as in [12]) we choose from the outset a resolution that is already
sufficiently fine for the construction of these coordinates. In fact Hsiang-Pati
coordinates exist on a resolution if and only if the resolution is complete.

In Section 4 we set notation and state our main theorems and defini-
tions. Theorem 1 states that a complete resolution always exists. Theorem 2
states that given a complete resolution we can find monomial generators for
the Nash sheaf. This second theorem will be a simple corollary of Theo-
rem 3, which states that a generic choice of linear functions will pull up to
be Hsiang-Pati coordinates on a complete resolution. These theorems are
proved in Sections 5 and 6, respectively. Section 2 below describes possible
applications of these monomial generators and future directions in research.

2. Applications

The existence of monomial generators for the Nash sheaf has applications
in L2-cohomology and analysis on singular spaces. In the three-dimensional
case Pati uses Hsiang-Pati coordinates to prove that the trace of the heat
operator is finite, and in fact satisfies a certain bound in [13] (although
this theorem has since been proved in greater generality, by different meth-
ods, in [10]). In the two-dimensional case, Pardon and Stern use these gen-
erators in [12] to describe the cohomological Hodge structure on the L2-
cohomology of an algebraic surface with isolated singular points in terms
of local cohomology groups obtained from a resolution. Pardon also uses
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Hsiang-Pati coordinates to examine L2 − ∂̄ cohomology groups (again in
the two-dimensional case) in [11]. Perhaps these results can be extended to
the three-dimensional case using the Hsiang-Pati coordinates and monomial
generators constructed here.

Moreover, the monomial generators for the Nash sheaf allow the con-
struction of an exact sequence that (partially) describes the Nash sheaf in
terms of the resolution data (divisors defined from the monomial genera-
tors). This exact sequence can be used to describe some of the Chern classes
of the Nash sheaf (and thus some of the Mather-Chern classes of the original
variety).

The construction of Hsiang-Pati coordinates developed here in the three-
dimensional case should be generalizable to the n-dimensional case, where in
the more general case a complete resolution will factor through the blowups
of a series of Fitting ideal sheaves. The exponents of the Hsiang-Pati co-
ordinates in this n-dimensional case will satisfy linear independence and
ordering conditions similar to those in the three-dimensional case. The
choice of “Nash minimal” functions will involve choosing φ1, . . . , φn so that
dφ1 · · · dφn is a minimal generator of ΛkN for 2 ≤ k ≤ n−1. The non-trivial
part of the n-dimensional case involves showing that a complete resolution
exists. Some of the results above appear in [15], while others are in devel-
opment and will appear in a future paper.

3. Notation

Let V be a three-dimensional complex algebraic variety with isolated sin-
gular point v, and let U be a neighborhood of v in V with an embedding
(U, v) ⊆ (CN , 0). Let π : (Ũ , E) → (U, v) be a resolution of the singularity
v with exceptional divisor E.

The Nash blowup Û is defined to be the closure of the image of the
section σ : U − v → Grn(TCN ) of the Grassmann bundle that sends each
point of U − v to its tangent space. The Nash blowup comes equipped
with a projection π̂ : Û → U that is the restriction of the projection from
the Grassmann bundle. The Nash blowup can also be characterized as the
blowup of the sheaf of 1-forms Ω1

U (see [9] and [2]).
The Nash bundle ν : N → Û over the Nash blowup Û is defined as the

restriction of the universal subbundle of Grn(TCN ) to Û . The Nash sheaf
N can then be defined as the sheaf of sections of the dual of the Nash
bundle (via the correspondence between vector bundles and locally free
sheaves). Note that if Ê := π̂−1(v), then since as vector bundles we have
N|Û−Ê ≈ T (Û − Ê), as locally free sheaves we have N|Û−Ê ≈ Ω

1
Û−Ê

.
Equivalently, if we think of the Nash blowup as the blowup of the sheaf

of 1-forms Ω1
U , then we can define the Nash sheaf N to be the locally free

sheaf

N := π̂∗Ω1
U/Torsion(π̂∗Ω1

U ) ≈ γ∗Q,
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where Q is the universal quotient sheaf on Gr(N − n,N) and γ is the
canonical map γ : Û ↪→ Gr(N − n,N).

We will call a sheaf N on a blowup π : Ũ → U a generalized Nash sheaf
(although we will often say simply “Nash sheaf”) if Ũ factors through the
Nash blowup Û of U , and if N is the pullback of the Nash sheaf on Û . Note
that N is a subsheaf of Ω1

Ũ
and that the canonical map π∗Ω1

U → Ω1
Ũ

factors
through N (see the Appendix (A3) in [12]).

We now define the Fitting ideal sheaf F that is integral to our notion
of a complete resolution. Given a coherent sheaf G on a complex algebraic
variety V , and an open affine set U ⊂ V , let

OmU
φ→ OnU → G|U → 0

be any local finite presentation of G over U . Choose bases for the free mod-
ules OmU and OnU , and consider the matrix of the morphism φ with respect
to those bases. We define the Fitting ideal Fi of G to be the sheaf of ideals
locally generated by the i×i subdeterminants of the matrix for φ. This local
definition patches together to form a coherent sheaf of ideals on OV (see [8];
note that his definition of a Fitting invariant involves the (n− i)× (n− i)
subdeterminants).

Now consider V to be a three-dimensional complex algebraic variety with
isolated singular point v, and let U be an affine neighborhood (in some CN )
of v in V . Let π : (Ũ , E)→ (U, v) be a resolution factoring through the Nash
blowup of U . We will be concerned with one of the Fitting ideal sheaves
corresponding to the inclusion η : NŨ ↪→ Ω1

Ũ
(logE) of the (generalized)

Nash sheaf N into the sheaf of logarithmic 1-forms (i.e. the sheaf of 1-
forms with logarithmic singularities along the exceptional set E). Note that
this inclusion is the composition of the inclusion NŨ ↪→ Ω1

Ũ
arising from

the construction of the Nash sheaf with the inclusion Ω1
Ũ
↪→ Ω1

Ũ
(logE)

of the sheaf of 1-forms into the sheaf of logarithmic 1-forms. Consider the
presentation

NŨ
η→ Ω1

Ũ
(logE)→ Ω1

Ũ
(logE)/NŨ → 0.

The second Fitting ideal F2 of the cokernel sheaf Ω1
Ũ

(logE)/NŨ is the sheaf
of ideals generated by the 2× 2 subdeterminants of the matrix for η (given
some bases for NŨ and Ω1

Ũ
(logE)). We will call this Fitting ideal simply

F , and refer to it as the second Fitting ideal of the Nash sheaf.
Given V , v, and U as above, and a resolution π : (Ũ , E) → (U, v), we

use the sheaves m, N , and F to determine if the resolution is complete, as
follows.

Definition 1. π : (Ũ , E) → (U, v) is a complete resolution if m is locally
principal, N is locally free, and F is locally principal over Ũ .

We choose to call such resolutions complete because they are blown up
just “enough” to allow the construction of so-called Hsiang-Pati coordinates.
Once a complete resolution is obtained, no further transforms need be taken
to construct these Hsiang-Pati coordinates.
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4. Results

The existence of a resolution satisfying the first two conditions of com-
pleteness is trivial; simply take any resolution factoring through the Nash
blowup and the blowup of the maximal ideal sheaf mv (see [16]). We will
call any resolution satisfying these first two conditions a base resolution.
The existence of a resolution that in addition satisfies the third condition is
nontrivial and is our first main theorem (which we will prove in Section 5).

Theorem 1. Given a three-dimensional complex algebraic variety V with
isolated singular point v and a sufficiently small affine neighborhood U of v
in V , there exists a complete resolution π : (Ũ , E)→ (U, v).

For our second result we must pass to the analytic category, although we
will use the same notation. Given a complete resolution π : (Ũ , E)→ (U, v),
let e ∈ E be a point of the exceptional divisor, and let W be an analytic
neighborhood of e in Ũ . We say the point e is a triple point of E if it lies
in the intersection of three components E1 ∩ E2 ∩ E3 of the exceptional
divisor. A double point e ∈ E is a point on the intersection of exactly two
components E1∩E2, and a simple point is a point e ∈ E that lies in exactly
one component E1 of E.

Given a triple point e we can choose coordinates {u, v, w} on W so
that the three components of E meeting at e are given by E1 = {u = 0},
E2 = {v = 0}, and E3 = {w = 0}. Similarly if e is a double point we can
choose coordinates so that E1 and E2 are given by the vanishing of u and v;
and if e is a simple point we can choose coordinates so that E1 = {u = 0}.
We will call coordinates satisfying these conditions divisor coordinates.

Before stating the second important theorem we need the following
rather technical definition:

Definition 2. An ordered set of three ordered triples of integers

{(m1,m2,m3), (n1, n2, n3), (p1, p2, p3)}

is called Hsiang-Pati ordered for a point e ∈ E if they satisfy:

1. If e is a double point, then either m3 = n3 = 0 and p3 = 1, or m3 =
p3 = 0 and n3 = 1; and if e is a simple point, then m2 = m3 = 0,
n2 = 1, p2 = 0, n3 = 0, and p3 = 1;

2. 0 < ml ≤ nl ≤ pl for l = 1, 2, 3 if e is a triple point, for l = 1, 2 if e is a
double point, or for l = 1 if e is a simple point; and

3.
∣∣∣m1 n1 p1
m2 n2 p2
m3 n3 p3

∣∣∣ 6= 0.

Our second theorem states that near any point e in the exceptional
divisor of a complete resolution one can find local generators for the Nash
sheaf that are the differentials of monomial functions whose exponents are
Hsiang-Pati ordered for e.
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Theorem 2. Given a three-dimensional complex algebraic variety V with
isolated singular point v, let U be an affine neighborhood of v in V with
complete resolution π : (Ũ , E) → (U, v). Choose a point e ∈ E and an ana-
lytic neighborhood W of e in Ũ . Then there exists a set of divisor coordinates
{u, v, w} on W so that the Nash sheaf N is locally generated by the differ-
entials dφ, dψ, dρ of monomial functions of the form

φ = um1vm2wm3 , ψ = un1vn2wn3 , ρ = up1vp2wp3

whose exponents {(m1,m2,m3), (n1, n2, n3), (p1, p2, p3)} are a Hsiang-Pati
ordered set.

Definition 3. Generators dφ, dψ, dρ for the Nash sheaf that satisfy the
conditions listed in Theorem 2 will be called monomial generators.

We will prove this theorem in Section 6. The monomial generators in
Theorem 2 will arise directly from the so-called Hsiang-Pati coordinates
constructed in Theorem 3 below.

Definition 4. Given a triple {j, k, l} of linear functions on CN ⊆ U , and
a complete resolution π : (Ũ , E) → (U, v), let φ := j ◦ π, ψ := k ◦ π, and
ρ := l ◦ π. Let e be a point in E with analytic neighborhood W . The triple
{φ, ψ, ρ} of functions on Ũ is Nash-minimal (with respect to e) if:

1. φ is a generator for m(W );
2. {dφ, dψ, dρ} is a generating set for N (W ); and
3. dφ dψ is a minimal element of Λ2N (W ).

The following propositions state that we can generically choose linear func-
tions that pull up to have the Nash-minimality properties above. To get the
first two properties we require only a base resolution; the third property
requires that we have a complete resolution. We state and prove these two
facts separately since the former is needed to prove the existence of a com-
plete resolution, and the latter requires that we have a complete resolution.

Proposition 1. Let π̂ : (Û , Ê) → (U, v) be any base resolution, and let ê
be a point of the exceptional divisor Ê. Then a generic choice of linear
functions j, k, and l on CN ⊇ U will pull up by π̂ to functions on Û that
satisfy conditions (1) and (2) of Nash-minimality with respect to ê.

Proposition 2. If π : (Ũ , E)→ (U, v) is a complete resolution, and e is any
point in E, then a generic choice of linear functions j, k, and l on U will
pull up to Nash-minimal functions with respect to e on Ũ .

We will prove Proposition 1 in Section 5.1. Proposition 2 will be proved
in Section 6.1. Theorem 3 uses Nash-minimal functions to construct so-
called Hsiang-Pati coordinates on the Nash sheaf of a complete resolution,
and will be proved in Sections 6.2 and 6.3.
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Theorem 3. Given a three-dimensional complex algebraic variety V with
isolated singular point v, let U be an affine neighborhood of v in V with
complete resolution π : (Ũ , E) → (U, v). Choose a point e ∈ E and an an-
alytic neighborhood W of e in Ũ . Let {φ, ψ, ρ} be a Nash-minimal set of
functions with respect to the point e. Then there exists a set of divisor co-
ordinates {u, v, w} on W and a set {(m1,m2,m3), (n1, n2, n3), (p1, p2, p3)}
of Hsiang-Pati ordered integers such that:

1. φ = um1vm2wm3 ;
2. ψ = S + ψ′, where

(a) S =
∑
slφ

εl with each εl ≥ 1 and rational; and
(b) ψ′ = un1vn2wn3 ;

3. ρ = T + ρ′, where
(a) T =

∑
tlφ

δl(ψ′)τl with δl ≥ 1 when τ = 0 and δlm1 + τln1 ≥ n1

when τ 6= 0 (and similarly for m2 and n2 and for m3 and n3 if e is
a triple point, or for m2 and n2 if e is a double point); and

(b) ρ′ = up1vp2wp3 .

The φ, ψ, and ρ are called Hsiang-Pati coordinates on Ũ (see [6], [14],
and [12]). The conditions on S and T ensure that if φ, ψ, and ρ generate
N (W ), then so will φ, ψ′, and ρ′. Thus the monomials φ, ψ′, and ρ′ in
Theorem 3 will be the φ, ψ, and ρ for Theorem 2 (so Theorem 2 is in fact
a simple corollary of Theorem 3).

5. Constructing a complete resolution

Let π̂ : (Û , Ê)→ (U, v) be a base resolution for the singularity v. Over such
a resolution the generalized Nash sheaf N̂ is locally free and the inverse
image m̂ of the maximal ideal mv is locally principal (see [12] and [3]).

Let F̂ be the second Fitting ideal sheaf for the inclusion N̂ ↪→ Ω̂1(log Ê)
of the Nash sheaf into the sheaf of logarithmic 1-forms on (Û , Ê). It would
be trivial to find a further resolution π̃ : Ũ → Û with a locally principal
second Fitting ideal F if it were true that under further resolutions the
inverse image π̃−1F̂ was equal to the Fitting ideal F of Ũ (we could then
take any resolution factoring through the blowup of F̂). Unfortunately this
is not generally the case.

Obtaining a resolution Ũ for which the Fitting ideal is locally principal
will consist of three steps. First, we show that the Fitting ideal of any base
resolution is locally principal at simple points of the exceptional divisor
(Proposition 3). Second, we show that blowups π̃ : Ũ → Û of certain curves
and points that do not intersect the simple point set “preserve” the Fitting
ideal, in the sense that the inverse image π̃−1F̂ is equal to the Fitting ideal
F on Ũ (Proposition 4). Finally we show that, after a preliminary blowup
Ŭ , there exists a finite sequence of such Fitting ideal preserving blowups
that results in a resolution Ũ of Ŭ that factors through the blowup of the
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Fitting ideal F̆ (Propositions 5 and 6). On such a resolution Ũ , the Fitting
ideal F will be equal to the locally principal inverse image of F̆ .

5.1. Proof of Proposition 1

Since we will be needing Proposition 1 in the proofs of Propositions 3 and 4,
we prove it now.

Proof (Proposition 1). Suppose π̂ : (Û , Ê) → (U, v) is any base resolution,
and choose any point ê in Ê. Let W be an analytic neighborhood of ê in
Û . It suffices to prove that we can make generic choices of linear functions
j, k, l, and h so that h ◦ π̂ generates m(W ), {d(j ◦ π̂), d(k ◦ π̂), d(l ◦ π̂)} is
a generating set for N (W ), and D3 ⊂ D1 where D1 := ker(h) and D3 :=
ker(j)∩ker(k)∩ker(l). The inclusion D3 ⊂ D1 will allow us to choose h = j.
For notational simplicity we will drop the W qualifier from our notation in
this proof, although everything will take place in the neighborhood W of ê.

Let F be a coherent sheaf of rank r, and suppose π̄ : (Ū , Ē) → (U, v)
is the blowup of U relative to F . From the construction of Ū we get a
canonical map γ : Ū → Gr(N − r,N). Given a codimension r subspace
Dr ⊆ CN , define the Schubert variety

S(Dr) := {Er ∈ Gr(r,N) | dim(Er ∩Dr) ≥ 1}.

Note that S(Dr) is the codimension 1 subset of Gr(r,N) consisting of the
r-planes in CN that are not transverse to Dr. Given any linear projection
p : CN → C

r, define the codimension r plane Dr := ker p. Let Υ be the
universal subsheaf over Gr(r,N). The map p induces (see [12]) a trivializa-
tion of Υ over Gr(r,N)−S(Dr). We can pull this back to a trivialization of
π̄∗F/Tors(π̄∗F) over Ū−γ−1S(Dr), since this is isomorphic to the pullback
of the universal quotient sheaf over Gr(r,N) (note we are making use of the
isomorphism between Gr(r,N) and Gr(N −r,N) under which the universal
subsheaf is pulled back to the dual of the universal quotient sheaf). More-
over, if π̂ : Û → Ū is a further blowup of Ū , we can pull this trivialization up
to a trivialization of (π̄ ◦ π̂)∗F/Tors((π̄ ◦ π̂)∗F) over Û−(γ ◦ π̂)−1S(Dr). We
will say that a plane Dr is arranged relative to a point ê ∈ Ê if π̂(ê) is not
in γ−1S(Dr). The following lemma, from [12] (a consequence of Kleiman’s
transversality theorem in [7]), states that “arranged” planes Dr are generic:

Lemma 1. For generic Dr in Gr(N − r,N), γ−1S(Dr)∩ Ē is either empty
or has codimension 1 in Ē, and can be arranged to miss any finite set of
points in Ē.

Suppose the base resolution π̂ factors as π̂ = π0 ◦ π̂0, where the map
π0 : (B(U), C)→ (U, v) is the blowup of the maximal ideal sheaf mv of the
singularity v. Let γ0 : B(U)→ Gr(N − 1, N) be the canonical map. By the
discussion above, any linear projection h : CN → C induces a trivialization
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of π∗0mv/Tors(π∗0mv) = π−1
0 (mv) over B(U)− γ−1

0 S(D1). The trivialization
in this case is given by the global section h◦π0. Pulling up to Û , this means
that h◦π̂ generates π̂∗mv/Tors(π̂∗mv) = π̂−1(mv) over Û−(γ0◦π̂0)−1S(D1).
Now given an ê ∈ Ê, we wish to choose h so that h ◦ π̂ generates π−1(mv)
near ê; therefore we must choose h so that π̂0(ê) is not in γ−1

0 S(D1). In other
words, given a point ê, we must choose h so that the hyperplane D1 = ker(h)
is “arranged” relative to ê. Such a choice is possible and generic by Lemma 1.

Since π̂ is a base resolution, it also factors as π̂ = π1 ◦ π̂1, where
π1 : (N(U), D) → (U, v) is the Nash blowup of U . Since the Nash blowup
can be obtained by blowing up the sheaf Ω1

U of 1-forms on U , any linear pro-
jection (j, k, l) : CN → C

3 induces a trivialization of π∗1Ω
1
U/Tors(π∗1Ω

1
U ) =

NN(U) over N(U) − γ−1
1 S(D3). Here γ1 : N(U) → Gr(N − 3, N) is the

canonical map and D3 := ker(j) ∩ ker(k) ∩ ker(l). This pulls up to a
trivialization of the generalized Nash sheaf π̂∗Ω1

U/Tors(π̂∗Ω1
U ) = NÛ over

Û−(γ1◦π̂1)−1S(D3). In other words, the projection (j, k, l) gives us a system
of generators for NÛ (namely {d(j ◦ π), d(k ◦ π), d(l ◦ π)}) near any ê where
π̂1(ê) is not in γ−1

1 S(D3). Given a point ê, by Lemma 1 we can generically
choose j, k, and l so that D3 is an “arranged” codimension three plane.

To show that we can choose j, k, l, and h so that D3 is contained in D1

we need the following simple fact concerning open sets of grassmannians:

Lemma 2. Given any codimension k plane Dk ∈ Gr(N − k,N) and any
neighborhood G ⊂ Gr(N − k,N) of Dk, let Dk−i ∈ Gr(N − (k − i), N) be
any codimension (k− i) plane containing Dk. Then any codimension (k− i)
plane D′k−i sufficiently close to Dk−i contains some D′k ∈ G.

Choose any arranged D3 (by choosing j, k, and l). Since arranged planes are
generic there is an open set G of D3 in Gr(N − 3, N) consisting entirely of
arranged codimension three planes. Now letH be any codimension one plane
(not necessarily “arranged”) containing D3. Since “arranged” codimension
one planes are generic there is a sequence of arranged planes {Hi} converging
to the chosen H. By Lemma 2, we can choose i sufficiently large so that Hi

contains some D′3 ∈ G. Choose D1 to be this Hi (thus choosing h) and then
rechoose j = h, k, and l so that ker(j)∩ker(k)∩ker(l) = D′3 is the new D3.
Now we have “arranged” choices of D1 and D3 with D3 ⊂ D1. ut

5.2. The Fitting ideal at simple points

Our first lemma will show that the second Fitting ideal is always locally
principal at simple points of the exceptional divisor. We will be working in
the analytic topology until Proposition 4.

Proposition 3. Let (Û , Ê) be a base resolution with second Fitting ideal
sheaf F̂ . Let ê be a simple point of Ê, and let Ŵ be an analytic neighborhood
of ê in Û . Then F̂(Ŵ ) is principal.
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Proof. Use Proposition 1 to choose linear functions j, k, and l on CN ⊇ U
so that φ := j ◦π, ψ := k ◦π, and ρ := l ◦π that have properties (1) and (2)
of Nash-minimality with respect to the simple point ê. Then {dφ, dψ, dρ} is
a basis for N̂ (Ŵ ). Let {u, v, w} be a set of divisor coordinates about ê in Ŵ ,
so that Ê = {u = 0} in Ŵ . The standard basis for the sheaf Ω̂1(log Ê) of
logarithmic 1-forms in these coordinates is then {duu , dv, dw}. With respect
to these bases, F̂(Ŵ ) is generated by the 2 × 2 subdeterminants of the
matrix uφu uψu uρuφv ψv ρv

φw ψw ρw

 .

We will rechoose divisor coordinates {u, v, w} so that it is obvious that
F̂(Ŵ ) is principal. This choice of {u, v, w} will put φ, ψ, and ρ into a form
similar to their form in the simple point case of Theorem 3 (and in fact this
proof will comprise most of the proof of the simple point case of Theorem 3).

Since φ, ψ, and ρ are Nash-minimal, φ generates m̂ and thus vanishes
only along {u = 0}. Thus φ = umµ for some integer m and local unit µ.
Change coordinates (by u 7→ uµ−1/m) to absorb µ into u (note the new
coordinates will still be divisor coordinates); then φ = um.

A priori we can write ψ as a series ψ =
∑

(a,b,c) s(a,b,c)u
avbwc. Define

S to be the sum of the terms in ψ for which b = c = 0, and let n be the
minimum of the integers a for which (a, b, c) has some nonzero b or c. Then
we have ψ = S + unR for some function R that is not divisible by u. Since
u does not divide R, the 2-form du dR is nowhere-vanishing, and thus R
is a coordinate independent of u. Therefore we can change coordinates by
setting v = R (note this does not affect φ or S), and we have ψ = S + unv.
Note that n > m because φ generates m̂ and thus φ divides ψ.

Similarly, we can write ρ =
∑

(α,β,γ) t(α,β,γ)u
αvβwγ = T + upQ, where

T is the sum of the terms of ρ that are of the form φl(unv)k for some l and
k, and Q is a function not divisible by u. Since u does not divide Q, neither
does it divide du dv dQ; hence du dv dQ is a nowhere-vanishing 3-form on Û .
Thus Q is a coordinate independent of both u and v. Change coordinates
once more by setting w = Q; we then have ρ = T + upw. Note that um

divides both G and up.
Since Sv = Sw = Tw = 0, the second Fitting ideal N̂ (Ŵ ) is generated

by the 2× 2 subdeterminants of the matrixmum uSu + nunv uTu + pupw
0 un Tv
0 0 up

 .

By the definition of S and T , um divides uSu and uTu, and un divides Tv.
Using these facts, a simple calculation of the ideal generated by the 2 × 2
subdeterminants of the matrix above reveals that the second Fitting ideal
is the principal ideal N̂ (Ŵ ) = 〈um+nvm+p〉. ut
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5.3. F̂-preserving blowups

Our next lemma will show that certain blowups on a base resolution Û
“preserve” the Fitting ideal; a further resolution π̃ : (Ũ , E) → (Û , Ê) is F̂-
preserving (near a point e ∈ E) if the second Fitting ideal F̂ on Û pulls up to
the second Fitting ideal F̃ on Ũ , i.e. if π̃−1F̂ = F̃ (in a local neighborhood
of e ∈ E). By Proposition 3 the Fitting ideal F̂ is always locally principal
at simple points of Ê (and of course is trivial away from Ê); thus we will
only be interested in blowups of the double and triple points of Ê.

Proposition 4. Let (Û , Ê) be a base resolution of (U, v). Then:

1. If π̃ : (Ũ , E)→ (Û , Ê) is a blowup with center a double line Ê1∩ Ê2 or a
triple point Ê1 ∩ Ê2 ∩ Ê3, then π̃ is F̂ -preserving near double and triple
points of E; and

2. If π̃ : (Ũ , E) → (Û , Ê) is the blowup of a single double point of Ê, then
π̃ is F̂ -preserving near double (but not necessarily triple) points of E.

Proof. Let π̃ : (Ũ , E)→ (Û , Ê) be one of the blowups above. Choose a point
ê ∈ Ê in the center of the blowup and a point e ∈ E in its inverse image
π̃−1(ê). Let Ŵ be a neighborhood of ê in Û and choose divisor coordinates
{û, v̂, ŵ} on Ŵ . Let W be a neighborhood of e in Ũ and choose divisor
coordinates {u, v, w} on W . Use Proposition 1 to choose linear functions
j, k, and l on CN ⊇ U and thus functions φ̂ := j ◦ π̂, ψ̂ := k ◦ π̂, and
ρ̂ := l ◦ π̂ with respect to the point ê so that φ generates m̂ and {dφ̂, dψ̂, dρ̂}
is a basis for N̂ (Ŵ ). In coordinates in Ŵ we can write φ̂ = ûm1 v̂m2ŵm3 ,
ψ̂ =

∑
(a,b,c) s(a,b,c)û

av̂bŵc, and ρ̂ =
∑
α,β,γ t(α,β,γ)û

αv̂βŵγ , where m3 = 0

if ê is a double point. Note that N = π̃−1N̂ is generated by the functions
φ := φ̂ ◦ π̃, ψ := ψ̂ ◦ π̃, and ρ := ρ̂ ◦ π̃ on W ⊆ Ũ .

We will need to consider the following six cases:

– π̃ is the blowup of a double line, with (a) ê a double point, e a double
point; (b) ê a triple point on the double line, e a triple point; or (c) ê a
triple point on the double line, e a double point.

– π̃ is the blowup of a triple point, with (d) ê a triple point, e a triple
point; or (e) ê a triple point, e a double point.

– π̃ is the blowup of a single double point, with (f) ê a double point, e a
double point.

Case (a). In our divisor coordinates the double line we are blowing up is
given by û = v̂ = 0. Consider the patch of π̃ given by π̃(u, v, w) = (u, uv, w)
(the proof for the other patch is entirely analogous with the roles of u and v
reversed). Note that in this patch of π̃, monomials on Ŵ of the form ûav̂bŵc

pull up to monomials ua+bvbwc on W . Since the generalized Nash sheaf N
on Ũ is by definition π̃−1Ñ , the inclusion η̂ : N̂ → Ω̂1(log(Ê)) pulls up to
a map π̃∗η̂ : N → π̃−1Ω̂1(log(Ê)). Thus the Fitting ideal F̂(Ŵ ) pulls up
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to the the ideal π̃−1F̂(W ) generated by the 2 × 2 subdeterminants of the
matrix

[π̃∗η̂] =

m1u
m1+m2vm2

∑
saua+bvbwc

∑
tαuα+βvβwγ

m2u
m1+m2vm2

∑
sbua+bvbwc

∑
tβuα+βvβwγ

0
∑
scua+bvbwc−1

∑
tγuα+βvβwγ−1

 .

On the other hand, F is generated by the 2 × 2 subdeterminants of the
matrix for the map η : N → Ω1(logE):

[η]=

(m1 +m2)um1+m2vm2
∑
s(a+ b)ua+bvbwc

∑
t(α+ β)uα+βvβwγ

m2u
m1+m2vmj

∑
sbua+bvbwc

∑
tβuα+βvβwγ

0
∑
scua+bvbwc−1

∑
tγuα+βvβwγ−1

.
Notice that

if [π̃∗η̂] =
(
A B C
D E F
0 H I

)
, then [η] =

(
A+D B+E C+F
D E F
0 H I

)
; (1)

these matrices clearly differ by elementary row operations. Therefore their
2× 2 subdeterminants generate the same ideal, i.e. π̃−1F̂(W ) = F(W ).

Case (b). In this case a computation similar to the above shows that
[π̃∗η̂] and [η] are again in the form (1) and thus that π̃−1F̂(W ) = F(W ).

Case (c). Let ê be a triple point on the double line û = v̂ = 0, and
consider the patch π̃(u, v, w) = (u, uv, w) of the blowup of that double line.
Suppose e is a double point in π̃−1(ê); for example, suppose e is on the
double line u = w = 0. A computation as in Case (a) shows that [π̃∗η̂] and
[η] are related as follows:

if [π̃∗η̂] =
(
A B C
D E F
0 H I

)
, then [η] =

(
A+D B+E C+F
D/v E/v F/v

0 H I

)
.

Since 1/v is a local unit at e, once again [π̃∗η̂] and [η] differ by elementary
row operations.

Case (d). The matrices [π̃∗η̂] and [η] are of the form:

[π̃∗η̂] =
(
A B C
D E F
G H I

)
, [η] =

(
A+D+G B+E+H C+F+I

D E F
G H I

)
.

Case (e). In this case we have:

[π̃∗η̂] =
(
A B C
D E F
G H I

)
, [η] =

(
A+D+G B+E+H C+F+I

D E F
G/w H/w I/w

)
,

where 1/w is a local unit near e.
Case (f). In the final case we have:

[π̃∗η̂] =
(
A B C
D E F
0 H I

)
, [η] =

(
A+D B+E+wH C+F+wI
D E F
0 H I

)
,

where w is a local unit near e. ut
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5.4. Results from Hironaka

The remaining two Lemmas require some notation and results from [4]. Let
F̂ be the second Fitting ideal sheaf for the Nash sheaf over a base resolution
π̂ : (Û , Ê) → (U, v). Note that F̂ is a sheaf of ideals supported on Ê and
locally principal at simple points of Ê (by Proposition 3).

Definition 5. Let x be any point in Û . The order ν(F̂x) of F̂ at x is the
highest power p for which the p-th power of the maximal ideal mx of OX,x
contains F̂x, i.e.

ν(F̂x) := max{p ∈ Z | mp
x ⊇ F̂x}.

The function x 7→ ν(F̂x) is upper-semicontinuous by Corollary 1 to
Theorem 2 in [5]. In other words, for every integer r, the set Ur := {x ∈ Û |
ν(F̂x) ≤ r} is open in Û . For each component Êi of Ê, let gi be the generic
point of Êi, and define νi := ν(F̂gi). Note that νi is also the generic value
of ν(F̂x) over all points x ∈ Êi, as follows. In a neighborhood of a simple
point, F̂ is locally principal, say 〈ua〉. Then given a simple point x ∈ Ê we
have ν(F̂) = max{m | 〈u, v, w〉mx ⊇ 〈u〉ax} = a. Thus for a dense open set of
points of Êi the order F̂ is equal to νi.

Stratify the exceptional divisor Ê as follows: S0 := {triple points of Ê},
S1 := {double points of Ê}, and S2 := {simple points of Ê}. We will call
these strata the “multiplicity” strata of the exceptional divisor Ê.

Proposition 5. Given a base resolution (Û , Ê) of (U, v), there exists a fur-
ther blowup π̆ : (Ŭ , Ĕ) → (Û , Ê) over which the order ν(F̆x) is locally con-
stant on the multiplicity strata of Ĕ.

The proof of Proposition 5 will require Theorem 4 below.
Suppose π̃ : Ũ → Û is a monoidal transform with nonempty irreducible

nonsingular center B ⊆ Û . Define B′ := π̃−1(B) and let IB′ be the sheaf
of ideals on Ũ that defines B′. Let b be the generic point of B and define
νb := ν(F̂b).

Definition 6. Suppose π̃ : Ũ → Û is a monoidal transform with center B.
The weak transform π̃w(F̂) of F̂ by π̃ is defined to be

π̃w(F̂) := π̃−1(F̂) I−νbB′ .

Now suppose we have a finite sequence of monoidal transforms

Ũr
π̃r−1−→ Ũr−1

π̃r−2−→ · · · π̃1−→ Ũ1
π̃0−→ Ũ0 := Û

with centers Bi ⊆ Ũi. Denote the weak transform at the ith level by Fi :=
π̃wi−1(Fi−1) for 0 < i ≤ r, with F0 := F̂ . Given a divisor with normal
crossings D = D0 on Û , define Di := red(π̃−1

i−1(Di−1) ∪ π̃−1
i−1(Bi−1)) ⊆ Ũi
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for 0 < i ≤ r. Let di be the maximum order of Fi over all of Ũi. The following
theorem is due to Hironaka (a more general version of this theorem appears
as Main Theorem II in [4]).

Theorem 4. Let F be a coherent sheaf of nonzero ideals on a nonsingu-
lar space Ũ0. Then there exists a finite sequence of monoidal transforms
{π̃i : Ũi+1 → Ũi} with centers Bi ⊆ Ũi such that:

1. Bi is nonsingular and irreducible;
2. ν((Fi)xi) ≥ di for all points xi ∈ Bi;
3. Di has only normal crossings with Bi.
4. Dr has only normal crossings, and ν((Fr)x) < d0 for every point x ∈ Ũr.

Note that by repeated application of Theorem 4 we can obtain a space ŨR
with the property that ν((FR)x) = 0 for every point x ∈ ŨR. This means
that we can “trivialize” the sheaf F̂ = F0 in the sense that we can find a
finite sequence of monoidal transforms so that its (iterated) weak transform
FR is the trivial sheaf.

It is very important to note that in the sequence of transformations
obtained in Theorem 4, the centers Bi are strata of Di where the order
ν((Fi)x) is locally at a maximum. This fact is shown in [1], where a con-
structive proof of Theorem 4 is given (in particular, see Remark 1.8 and
Theorem 1.10 there): at each stage of the resolution, the center of blowing-
up is a locally maximum stratum of the local invariant ν. This method of
constructive resolution is also used in [17] and [18]. In particular, the order
of Fi at each point x in Bi will be greater than or equal to the order of
Fi at any neighboring point in Di. This fact will be useful in the proof of
Proposition 5 as well as at the end of the proof of Proposition 6 below. We
are now in a position to prove Proposition 5.

Proof (Proposition 5). The order ν(F̂x) must be locally constant on S0

(which consists only of isolated points) and on S2 (since F̂ is locally principal
at these points). Since ν(F̂x) is upper-semicontinuous, the only way that
ν(F̂x) can fail to be locally constant on S1 is if it jumps to a higher value
at isolated double points.

Suppose b is a double point of Ê with the property that ν(F̂b) > ν(F̂x)
for nearby points x on the same double line. Then the order of F̂ at b is
at a local maximum, and thus the point b is a permissible center B0 for
blowing up. Blowing up with center b will result in a new component of
the exceptional divisor; above b we will have new simple, double, and triple
points.

By the discussion above we are only concerned with making the order
of the ideal sheaf locally constant along the double point set. If there are
more ”bad” double points in the new double point set, they are once again
permissible centers for blowing up in the Hironaka argument and we can
repeat the process. By part (d) of Theorem 4, this process of blowing up the
”bad” double points will eventually result in a space for which the maximum
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order of the (iterated) weak transform F̂w of F̂ has been reduced, i.e. has
been made strictly less than ν(F̂b) at every new double point. By repeating
this process we can obtain a space Ŭ for which the weak transform F̂w is
locally constant along the strata of Ĕ.

Since the weak transform of F̂ and the inverse image of F̂ by π̆ differ by
a locally principal ideal, we now know that the the inverse image π̆−1(F̂)
has locally constant order along the strata of Ĕ. By Part (2) of Lemma 4 we
know that each of the blowups described above is F̂-preserving at the new
double points. Therefore we will have F̆y = π̆−1(F̂b) for each new double
point y above b, and thus F̆ will have locally constant order along the strata
of Ĕ. ut

Proposition 6. Let (Ŭ , Ĕ) be a resolution of (U, v) over which ν(F̆x) is
locally constant. Then there exists a F̆-preserving map π̃ : (Ũ , E)→ (Ŭ , Ĕ)
such that π̃−1(F̆) is locally principal on Ũ .

To prove Proposition 6 we need to show that there exists a further
resolution over which the inverse image of the Fitting ideal sheaf F̆ is locally
principal. By Theorem 4 we can find a resolution so that the weak transform
of a given sheaf of ideals is locally principal. We will define an ideal sheaf
Ğ associated to F̆ in such a way that the inverse image of F̆ will be locally
principal whenever the weak transform of Ğ is the trivial sheaf, and apply
Theorem 4 to Ğ.

Let Ĕi denote a component of the exceptional divisor Ĕ. Define the
divisor L :=

∑
νiĔi, and let IL be the sheaf of ideals on Ŭ defining L. Let

F̆ be the Fitting ideal sheaf for the Nash sheaf on Ŭ .

Lemma 3. With notation as above, F̆ ⊆ IL.

Proof. It suffices to prove that F̆x ⊆ (IL)x for all x ∈ Ĕ. In the case where
x is a simple point in Ĕi = {u = 0} the inclusion is in fact an equality:
F̆x = 〈uνi〉x in this case, and (IL)x = (IνiEi)x = 〈uνi〉x.

Suppose that x is a double point in Ĕi ∩ Ĕj = {u = 0} ∩ {v = 0}, and
choose an element σ ∈ F̆x. Since F̆ is supported along Ĕ, σ vanishes along
Ei and Ej ; thus we have σ = uaf with u - f and σ = vbg with v - g.
Since F̆y = 〈uνi〉y at all nearby simple points y ∈ Ei, we have a ≥ νi;
similarly we have b ≥ νj . Thus we can write σ = uνiA and σ = vνiB for
some holomorphic A and B; since (OŬ )x is a unique factorization domain
we thus have σ = uνivνjC for some holomorphic C. In other words, we have
σ ∈ 〈uνivνj 〉x = (IL)x. The proof in the triple point case is analogous. ut

By the Claim above we can now define Ğ to be Ğ := F̆ I−1
L , the ideal

quotient of F̆ by IL. Note that Ğ = OŬ if and only if F̆ is locally principal.
Moreover, since F̆ is locally principal at the simple points of Ĕ (by Propo-
sition 3), Ğ is supported on the set of double and triple points of Ĕ. By
applying Theorem 4 to the ideal sheaf Ğ we will now prove Proposition 6.
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Proof. By repeated application of Theorem 4 to the coherent sheaf of ideals
Ğ and divisor with normal crossings Ĕ on Ŭ we can trivialize Ğ, as follows.
Applying Theorem 4 to Ğ gives us a sequence of monoidal transforms

Ũr
π̃r−1−→ Ũr−1

π̃r−2−→ · · · π̃1−→ Ũ1
π̃0−→ Ũ0 := Ŭ

with centers Bi ∈ Ũi satisfying (1)–(3) of Theorem 4. By part (d) of The-
orem 4, ν((Ğr)x) < d0 for every point x ∈ Ũr; thus the maximum order
of the ideal sheaf has strictly decreased after this sequence of monoidal
transformations. By repeating this process we can obtain a sequence

Ũ := ŨR
π̃R−1−→ ŨR−1

π̃R−2−→ · · · π̃1−→ Ũ1
π̃0−→ Ũ0 := Ŭ

with the property that the weak transform ĞR = (π̃wR−1 ◦ · · · ◦ π̃w0 )(Ğ) has a
maximum order of zero; in other words ν((ĞR)x) = 0 for every x ∈ Ũ . Thus
we have ĞR = OŨ .

Let yi be the generic point of Bi and define bi := ν((Ği)yi). Let B′i denote
the inverse image B′i := π̃−1(Bi) ⊆ Ũi+1. Define π̃ := π̃R−1 ◦ · · · ◦ π̃0. Then
by Definition 6 we have

ĞR = π̃−1(̂̆G) ((π̃−1
R−1 ◦ · · · ◦ π̃

−1
1 )IB′0)−b0 · · · (π̃R−1IB′R−2

)−bR−2I−bR−1

B′R−1
.

By the definition of Ğ we have π̃−1(Ğ) = π̃−1(F̆)(π̃−1(IL))−1. Then since
ĞR = OŨ we can write π̃−1(F̆) as the locally principal ideal

(π̃−1(IL)) ((π̃−1
R−1 ◦ · · · ◦ π̃

−1
0 )IB0)d0 · · · (π̃R−1IB′R−2

)−bR−2I−bR−1

B′R−1
.

It now remains only to show that π̃ is a F̆-preserving map. By Proposi-
tion 4 it suffices to show that each center Bi is a double line or triple point
of Di. Since by Proposition 5 the order of Ği is locally constant along the
strata of Di, it suffices to prove that Bi is supported away from the simple
point set of Di and that the order of Ği is greater at points of Bi than
at any neighboring points of Ũi. Note in particular that this excludes the
possibility that Bi is a single double point of Di.

We begin by showing that the first center B0 satisfies these conditions.
If x is a simple point of Ĕ = D0 then F̆ is principal at x, so Ğx ≈ OŨ,x,
and thus ν(Ğx) = 0. But part (2) of Theorem 4 ensures that for x ∈ B0, the
order ν(Ğx) is greater than or equal to the maximum order d0 on Ũ0; thus
B0 is supported away from the simple point set of D0. By Proposition 5 the
order of Ğ is locally constant along the strata of D0, and by the remarks
following Theorem 4 the center B0 must be a maximal component of that
stratification. Thus B0 must be either a double line or triple point of D0.

We must now show that blowing up with center B1 is a F̆-preserving
operation. We first show that B1 can not contain any simple points of D1.
Suppose x ∈ D1 is a simple point. By the definition of Ğ1 we have

Ğ1 = (π−1
0 Ğ)x (IB′0)−b0x = (π̃−1

0 F̆)x (π̃−1
0 IL)−1

x (IB′0)−b0x . (2)
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By Proposition 4, since B0 is a double line or a triple point of D0, the
map π̃0 is a F̆-preserving map. Thus (π̃−1

0 F̆)x is isomorphic to the Fitting
ideal on Ũ1 at x, which by Proposition 3 is principal. Thus in particular
π−1

0 Ğ0 is principal at x. If y is the generic point of B′0, then ν(π̃−1Ğy) = b0;
thus b0 is the largest integer for which the locally principal ideal IB′0 divides
π̃−1

0 Ğ (see the remarks above and page 142 of [4]). Therefore by (2) we must
have (Ğ)x ≈ OŨ,x, and thus ν((Ğ1)x) = 0. By part (2) of Theorem 4 the
order of Ğ1 cannot be zero at any point of B1. Therefore the intersection of
B1 with the simple point set of D1 is empty.

As we saw with B0, since B1 is supported away from the simple points of
D1 and must be a maximal component of D1 according the the stratification
of D1 by the order of Ğ1, B1 must be a double line or a triple point of D1.
Repeating these arguments for B2, . . . , BR−1 completes the proof. ut

5.5. Proof of Theorem 1

Proof (Theorem 1). Let π̂ : (Û , Ê) → (U, v) be a base resolution. If the as-
sociated Fitting ideal F̂ is locally principal, we are done. If not, by Proposi-
tion 5 we can obtain a further resolution π̆ : (Ŭ , Ĕ)→ (Û , Ê) over which the
order of F̆ is locally constant along the multiplicity strata of Ĕ. Then by
Proposition 6 we can obtain a further resolution π̃ : (Ũ , Ẽ) → (Ŭ , Ĕ) by a
sequence of F̆-preserving blowups such that π̃−1F̆ = F is locally principal.
The resolution π := π̂ ◦ π̆ ◦ π̃ is then a complete resolution of (U, v). ut

6. Hsiang-Pati coordinates and monomial generators

In this section we prove that in a complete resolution Ũ , the Nash sheaf
has local generators that are the differentials of monomial functions (Theo-
rem 2). These monomial generators will be obtained by constructing Hsiang-
Pati coordinates on Ũ from a generic choice of Nash-minimal functions
(Proposition 2 and Theorem 3) and then extracting the distinguished mono-
mial components of these coordinates.

We begin by proving Proposition 2 so that we can choose Nash-minimal
functions. In Section 6.2 we prove Theorem 3 in the case where e is a triple
point of E. The double and simple point cases are discussed in Section 6.3.
In Section 6.4 we prove Theorem 2 as a simple corollary of Theorem 3.

6.1. Nash-minimal functions

In Section 5.1 we proved that given a base resolution Ũ , a generic choice
of linear functions on CN ⊇ U pulls up to functions on Ũ that satisfy
conditions (1) and (2) of Nash-minimality. In this section we prove that in
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a complete resolution, a generic choice of linear functions induce functions
on Ũ that satisfy all three conditions of Nash-minimality.

Let π : (Ũ , E)→ (U, v) be any complete resolution, and choose any point
e ∈ E. Although we will not always indicate so in our notation, we will be
working in an analytic neighborhood W of e in Ũ ; let {u, v, w} be divisor
coordinates for W centered at e.

Choose j, k, and l as in Proposition 1. Then {d(j ◦ π) d(k ◦ π), d(k ◦
π) d(l ◦ π), d(j ◦ π) d(l ◦ π)} is a set of generators for Λ2N . We must show
that one of these generators is a minimal element of Λ2N . The following
definition describes what we mean by “minimal”.

Definition 7. A two-form ω ∈ Λ2N ⊂ Ω2(logE) is minimal at e if one of
its coefficients in the standard basis for Ω2(logE) vanishes to the minimum
possible order at the point e.

In other words, ω vanishes to the minimum order if one of its coefficients in
the logarithmic basis is µg, where µ is a local unit and g is the generator
of the locally principal Fitting ideal sheaf F . Such an ω will vanish to
the minimum order along each of the components of E. A generic 2-form
ω ∈ Λ2N will vanish to the minimum order (that of g) at e. We are now in
a position to prove Proposition 2.

Proof (Proposition 2). Choose j, k, and l as above. These induce generators
of Λ2N , one of which must vanish to the minimum order (since minimality
is generic). Without loss of generality suppose that d(j ◦ π) d(k ◦ π) is this
minimum generator, and define D2 := ker(j) ∩ ker(k). We will say that a
codimension two plane D2 is arranged if it comes from a arranged codi-
mension three plane D3. The set of arranged D2 planes is generic since
minimality is generic.

Let D3 be as in the proof of Proposition 1, and choose h (and D1 :=
ker(h)) so that h ◦ π̂ generates m. It remains only to prove that we have a
flag of arranged planes D3 ⊂ D2 ⊂ D1 (after possibly rechoosing j, k, l,
and h).

Choose any arrangedD3 and use the minimal generator of Λ2N to choose
D2. By definition D2 will be “arranged” and contain D3. Now choose any
codimension one plane H containing D2. As we did in Proposition 1, use
Lemma 2 to find a nearby codimension one plane that is arranged and
contains some arranged D′2 in a neighborhood of D2. Rechoose j = h, k,
and l accordingly. ut

6.2. Hsiang-Pati coordinates at triple points

The proof of Theorem 3 in the triple point case will depend on the following
key computational lemma.
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Lemma 4. Let (Ũ , E) be a complete resolution of (U, v) and choose a triple
point e ∈ E1 ∩E2 ∩E3. Given Nash-minimal φ, ψ, and ρ for e, and divisor
coordinates {u, v, w} in a neighborhood W of e, we have:

dφ dψ = ug1vg2wg3

(
A
dudv

uv
+B

dvdw

vw
+ C

dudw

uw

)
dφ dψ dρ = ud1vd2wd3(µ dudvdw)

where the gl and dl are positive integers, µ is a local unit, and at least one
of A, B, or C is a local unit.

Proof. We give an idea of the proof and leave the details to the reader.
That one of A, B, or C is a local unit follows from the fact that F is
locally principal and dφ dψ is a minimal element in Λ2N . The exponents
gl are positive integers because ug1vg2wg3 differs from the generator of F
by a local unit. Finally, since Λ3N ↪→ Ω3 is an inclusion of locally free
rank one sheaves that is an isomorphism everywhere away from E we have
Λ3N ≈ Ω3 ⊗ O(−D) for some positive divisor D supported on E. Then
ud1vd2wd3 is the local defining function for D in W . ut

Proof (Theorem 3, triple point case). Let π : (Ũ , E)→ (U, v) be a complete
resolution, and choose a triple point e ∈ E1 ∩E2 ∩E3 ⊂ E. Let {φ, ψ, ρ} be
a Nash-minimal set of function with respect to e, and choose divisor coordi-
nates {u, v, w} in an analytic neighborhood W of e in Ũ . All computations
that follow are assumed to be taking place in W .

By Nash-minimality, φ generates m; thus (after a simple change of co-
ordinates) we can write φ = um1vm2wm3 , where Z =

∑
miEi is the divisor

determined by the sheaf of locally principal ideals m. Note that by definition
φ will divide both ψ and ρ.

A priori we can write ψ as a convergent power series
∑
s(a,b,c)u

avbwc.
For notational simplicity we will drop the subscript on the coefficients and
write each s(a,b,c) simply as s. Define ψ′ to be the sum of the terms in ψ
for which (a, b, c) is linearly independent of (m1,m2,m3). We will use an
asterisk to denote that only these “independent” terms are to be considered;
thus ψ′ =

∑
∗ su

avbwc. Then ψ = S+ψ′ where S =
∑
slφ

εl . Each εi is ≥ 1
since φ divides ψ.

To show that φ′ can be written in the form un1vn2wn3 we calculate dφ dψ
and apply Lemma 4. Define n1 to be the minimum exponent a appearing
in ψ′. Similarly define n2 and n3 to be the minimum such b and c. A simple
calculation shows that

dφ dψ = um1+n1vm2+n2wm3+n3

(
A
dudv

uv
+B

dvdw

vw
+ C

dudw

uw

)
(3)

where A =
∑
∗ su

a−n1vbwc
∣∣m1 a
m2 b

∣∣ (and B and C are similar expressions).
By Lemma 4 and the definition of the nl, at least one of A, B, or C must
be a local unit. Thus (n1, n2, n3) must be one of the triples (a, b, c) ap-
pearing in ψ′; in other words, the minimum powers of u, v, and w in
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ψ′ all appear in the same monomial. Therefore ψ′ = un1vn2wn3R where
R =

∑
∗ su

a−n1vb−n2wc−n3 is a local unit.
We now must change coordinates to absorb R into u, v, and w without

disrupting the form of φ = um1vm2wm3 . Since (n1, n2, n3) is a triple (a, b, c)
that is independent of (m1,m2,m3), at least one of m1n2 −m2n1, m2n3 −
m3n2, and m1n3 − m3n1 is nonzero. Without loss of generality say ∆ :=
m1n2 − m2n1 6= 0. Rechoose coordinates by mapping u 7→ uRm2/∆ and
v 7→ vR−m1/∆. This fixes ψ and S while sending ψ′ to un1vn2wn3 . Note
that since φ divides ψ we have ml ≤ nl for each l = 1, 2, 3.

Now write ρ as the series
∑
s(α,β,γ)u

αvβwγ . Define T to be the sum
of the terms in ρ where the triple (α, β, γ) is a rational linear combination
of (m1,m2,m3) and (n1, n2, n3). Then we have ρ = T + ρ′ where T =∑
tlφ

δl(ψ′)τl and ρ′ =
∑
∗∗ su

αvβwγ .
Define p1 to be the minimum α appearing in ρ′. Similarly define p2 and

p3 to be th minimum β and γ in ρ′. With this notation we calculate:

dφ dψ dρ = um1+n1+p1−1vm2+n2+p2−1wm3+n3+p3−1 µdudvdw,

where µ =
∑
∗∗ tu

α−p1vβ−p2wγ−p3

∣∣∣m1 n1 α
m2 n2 β
m3 n3 γ

∣∣∣. By Lemma 4, µ must be a
local unit. Thus (p1, p2, p3) is one of the triples (α, β, γ) in ρ′, and hence
ρ′ = up1vp2wp3 Q where Q is a local unit. Moreover, since (p1, p2, p3) is a
triple satisfying (∗∗) and (n1, n2, n3) is a triple satisfying (∗), the matrix
M :=

(m1 n1 p1
m2 n2 p2
m3 n3 p3

)
has nonzero determinant.

We now absorb the local unit Q into the coordinates {u, v, w} while
preserving the forms of φ and ψ constructed above. Change coordinates by
mapping u 7→ uQA, v 7→ vQB , and w 7→ wQC where A, B, and C are
defined by

(
A
B
C

)
:= M−1

(
0
0
−1

)
. Under these new divisor coordinates we

have ρ′ = up1vp2wp3 while φ, ψ, and T are fixed.
It remains to show that δl ≥ 1 for terms of T where τ = 0, δlm1 +τln1 ≥

n1 when τ 6= 0 (and similarly for m2, n2 and m3,m3), and that (n1, n2, n3)
is piecewise less than or equal to (p1, p2, p3). We will use two different no-
tations for T , namely T =

∑
slφ

δl(ψ′)τl and T =
∑

not∗∗ s(α,β,γ)u
αvβwγ .

With this notation, to prove the three remaining facts it suffices to prove
that δl ≥ 1 when τ = 0 and that (α, β, γ) is piecewise greater than or
equal to (n1, n2, n3) for all triples (α, β, γ) appearing in ρ that are linearly
independent of (m1,m2,m3).

For the terms in T where τ = 0 we have (α, β, γ) = (m1δl,m2δl,m3δl).
Since ρ vanishes to at least order φ, each (α, β, γ) in T is piecewise greater
than or equal to (m1,m2,m3). Thus when τ = 0 we have δl ≥ 1.

The final fact will be proved by comparing dφ dψ and dφ dρ and invoking
the third condition of Nash-minimality. We calculate that dφ dψ is equal to:

um1+n1vm2+n2wm3+n3
(
|m1 n1
m2 n2 | dudvuv + |m2 n2

m3 n3 | dvdwvw + |m1 n1
m3 n3 | dudwuw

)
and dφ dρ is equal to:

um1vm2wm3
∑
∗
tuαvβwγ

(∣∣m1 α
m2 β

∣∣ dudv
uv +

∣∣m2 β
m3 γ

∣∣ dvdw
vw + |m1 α

m3 γ | dudwuw

)
.
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Note that in the second equation we are taking the sum over all triples
(α, β, γ) appearing in ρ that are linearly independent of (m1,m2,m3). By
Nash-minimality, dφ dψ vanishes to the least possible order at the point e
and thus (n1, n2, n3) must be less than or equal to (α, β, γ) for each triple
(α, β, γ) satisfying (∗). ut

6.3. Hsiang-Pati coordinates at double and simple points

The proof of Theorem 3 in the double and simple point cases is similar to
the above. We briefly discuss these cases here.

During the proof of Proposition 3 we put φ, ψ and ρ into the desired
forms for Theorem 3 (in the simple point case), with the exception that
we did not show that n1 < p1. In Proposition 3 we assumed only that φ,
ψ, and ρ satisfied the first two conditions of Nash-minimality. Since we are
now working in a complete resolution we can assume all three conditions of
Nash-minimality hold. In a manner entirely similar to the triple point case
proved above we can then show that n1 < p1.

The computations involved in proving the double point case of Theo-
rem 3 are essentially the same as those used in the proof of the triple point
case above, with one exception. The double point case version of Equa-
tion (3) is

dφ dψ = um1+n1vm2+n2

(
A
dudv

uv
+B

dvdw

v
+ C

dudw

u

)
.

By Lemma 4 at least one of A, B, or C is a local unit. This leads to two
possible cases: we can write ψ′ = un1vn1R where R is either a local unit (if
A is a local unit) or R is the product of a local unit with w (if A is not a local
unit). This produces the two cases in part (1) of Definition 2 for Hsiang-pati
ordered exponents at double points. Although the proof of Theorem 3 in the
double point case must now be split into two separate cases, the calculations
are again analogous to those in the proof of the triple point case.

It is worth remarking that in Pati’s double-point statement of the three
dimensional case (see [14]), the functions playing the roles of ψ′ and ρ′ are
always of the form of the first case, namely ψ′ = un1vn2 and ρ′ = up1vp2w.
Pati blows up as much as necessary to achieve this result, while here we only
want to blow up enough so that we have a complete resolution. A complete
resolution guarantees that we are in one of the two cases described above,
but cannot ensure that we are in the “first” case as in [14]. This does not,
however, make the Hsiang-Pati coordinates constructed here any less useful.

6.4. Proof of Theorem 2

Now that we have proved Theorem 3 we can prove Theorem 2 as a simple
corollary. As the simple, double, and triple point cases are entirely analogous
we focus only on the triple point case.
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Proof (Theorem 2). Let π : (Ũ , E) → (U, v) be a complete resolution and
choose a triple point e ∈ E. Use Theorem 3 to construct Hsiang-Pati coor-
dinates φ, ψ = S + ψ′, and ρ = T + ρ′ in an analytic neighborhood W on
Ũ with divisor coordinates {u, v, w} centered at e. We will show that the
distinguished monomial parts φ, ψ′, and ρ′ of these Hsiang-Pati coordinates
induce monomial generators of N . By construction the exponents of φ, ψ′,
and ρ′ form a Hsiang-Pati ordered set, and the differentials of the functions
φ, ψ, and ρ generate the Nash sheaf N on Ũ . It remains to show that dφ,
dψ′, and dρ′ also generate N .

We will show that the basis {dφ, dψ, dρ} can be written in terms of dφ,
dψ′, and dρ′. It suffices to show that dS and dT can be written in terms of
dφ, dψ′, and dρ′. It is simple to calculate:

dS =
(∑

slεlφ
εl−1

)
dφ.

Thus since each εl is greater than or equal to one by part (2a) of Theorem 3,
dS is a holomorphic multiple of dφ.

For the second calculation we will separate the terms of T according to
whether τl is equal to zero, so that T =

∑
τl=0 tlφ

δl +
∑
τl 6=0 tlφ

δl(ψ′)τl . We
can then calculate:

dT =
(∑
τl=0

tlδlφ
δl−1 +

∑
τl 6=0

tlδlφ
δl−1(ψ′)τl

)
dφ+

(∑
τl 6=0

tlτlφ
δl(ψ′)τl−1

)
dψ′.

By part (3a) of Theorem 3 we have δl ≥ 1 when τl = 0 and δlm1 + τln1

greater than or equal to n1 (and thus also m1) when τl 6= 0 (similarly for
m2 and m3). Thus dT is a holomorphic linear combination of dφ and dψ′.

The double and simple point cases are similar. ut
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