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Abstract:  We further identify and categorize intrinsically knotted bipartite graphs.  We are motivated by a 
conjecture that a bipartite graph with E ≥ 4V- 17 is intrinsically knotted.  We verify the conjecture for 
graphs that have exactly 6 vertices in one part and at least 6 in the other.  We also provide similar bounds 
for all bipartite graphs. 

 
1. Introduction 

 
 Within the realms of knot theory and graph theory, we find opportunities to 
profoundly expand our understanding.  First, however, we must be aware of some simple 
concepts and definitions.   
 
 A graph consists of edges and vertices. A graph is not a 3-dimensional construct, 
but we may place it in space as a spatial embedding.  In this case, the edges are 
represented by curves, and the vertices are represented by points.  There is generally 
more than one way to represent a graph as a spatial embedding.   
 
 Partite graphs are graphs where the vertices have been partitioned into two or 
more disjoint sets.  A key characteristic of partite graphs is that the vertices from one part 
do not share any edges; they are connected only to vertices from the other parts.  A 
bipartite graph has two parts.  We refer to a bipartite graph with the following notation: 
Ka,b\me.  K is the symbol for a complete graph, which means that it includes all possible 
edges.  The symbols a and b communicate how many vertices are in each of the two parts 
of the graph.  The letter e stands for edges, and is used only when the graph is a certain 
number of edges, m, short of being complete.  For example, the notation K8,7\12e refers 
to a set of graphs each of which has 15 vertices total, 8 in one part and 7 in the other, and 
12 edges missing compared to the complete graph. As the complete graph has 56 edges, a 
K8,7\12e graph will have 44 edges.  Notice that there are many ways to remove 12 edges, 
so this notation does not refer to a single graph. Note also that Ka,b and Kb,a are two ways 
of denoting the same graph.  We will usually write the larger part first. 
 
 A knot is a simple closed curve in space.  The unknot is the trivial knot—it can be 
deformed to look like a circle. Within a graph, there exist many different cycles.  These 
are paths that begin and end at the same vertex.  They need not include all vertices and 
edges.  If, in a graph, we follow a cycle of edges and vertices, it may be possible to 
identify a knotted cycle (i.e., a cycle containing a knot other than the unknot).  We say 
that a graph is intrinsically knotted (IK) if for every spatial embedding, there exists at 
least one knotted cycle. It is important to understand that intrinsic knottiness is a property 
of the graph, not of the particular embedding or cycle.  The goal of our research is to 
further identify and categorize the existence of intrinsically knotted bipartite graphs.   
 
 There are several methods used to show that a graph is IK.  Our favored method is 
to show that a graph contains an IK subgraph or an IK minor.  A subgraph, G, is obtained 
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from an original graph, G’, through any sequence of vertex deletions and edge deletions.  
Minors are a larger category than subgraphs, as they can also be obtained through edge 
contractions.  If we can show that a graph contains an IK minor or an IK subgraph, then 
we have shown that it, too, is IK.   
  
 In particular, we relied on the existence of a class of graphs described in [KS].  
We will refer to them as the KS graphs.  These are fourteen graphs that have been 
obtained from K7, which was shown to be IK by Conway and Gordon [CG].  The KS 
graphs have been obtained through a series of ∆Y transformations.  This is a movement 
that replaces three vertices, connected as a triangle, with four, connected as a ‘Y’ shape, 
but maintains three edges.  Significantly, this transformation is known to preserve the 
condition of intrinsic knottiness, so all of the KS graphs obtained from K7 through ∆Y 
transformations are also IK.   
 
 

 
Triangle-Y transformations preserve IK 

 
 In our quest to prove that a bipartite graph with E ≥ 4V-17 is intrinsically knotted, 
we first came across some smaller, though enlightening, results.  For instance, we first 
studied some specific cases in an attempt to discover a pattern.  In the course of these 
pursuits, we were able to show that K5,5\3e is one-quarter IK (E = 4V-18), that any graph 
of the form K6,6 \ 5e is IK (E = 4V-17), that a graph of the form K6,6 \ 6e is IK provided it 
is not the graph K6,6\{(a1,b1),(a2,b2),(a3,b3),(a4,b4),(a5,b5),(a6,b6)}, and that any graph of 
the form K7,7\10e is IK (E = 4V-17).  We include the number of edges in terms of vertices 
to show that we can not do better than E = 4V - 17 in the case of K5,5 and our results for 
K6,6 and K7,7 verify the conjecture for those graphs.  We prove these results in section 3 
below. 
 
 In the course of our journey, we were also able to show that all graphs of the form 
K6+n, 6\(2n + 5)e are IK where n ≥ 1 (and, as above, this is also true when n = 0). This 
result proves our conjecture that if E ≥ 4V-17, then the graph is intrinsically knotted for 
the case of a graph with exactly 6 vertices in one part and at least 6 in the other.  We also 
found similar general results. For example, we showed that K7+n, 7\(2n + 10)e is IK where 
n ≥ 1. As a Corollary, we see that such graphs are IK when E ≥ 5V-31. (Although this is 
far from our conjecture, it is much better than the previous best bound.) For K8+n,8,  we 
have, K8+n,8\(2n+15) is IK when n ≥ 1.  Also, any graph of the form Ka, a\(6a-34)e is IK 
where a ≥ 9.  Finally, we proved that all graphs of the form Ka+n,a\(3n + 6a-34)e are IK 
when a ≥ 9 and n ≥ 0. Together with the work of [CHPS], these give bounds on the 
number of edges required to ensure intrinsic knottiness for any bipartite graph. We prove 
these results in section 4.  
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We begin by presenting two lemmas in the next section. 
 

 
 

2. Lemmas 
 
Lemma 1.  Let (k-1)(a + 1) < m + k. If all graphs of the form Ka, b\m edges are IK, then 
all the graphs with Ka+1, b\ (m + k) are also IK. 
 
Proof: Assume all Ka,b\me graphs are IK. Because (k-1)(a + 1) < m + k, more edges are 
removed than (k-1) times the amount of vertices on the “a” side, so by the Pigeonhole 
Principle at least one of the (a + 1) vertices in the Ka+1,b\(m + k)e has k or more edges 
removed. If we ignore that vertex we are left with a Ka,b\me graph, which is known to be 
IK because it was our base assumption. �  
 
Although we wrote Ka,b in the above lemma, we did not assume that a ≥ b in proving it. 
 
Lemma 2.  K2 + G is intrinsically knotted iff G is non-planar. 
 
We will omit this proof as it is proved in [BBFFHL]. 
 

 
3. Specific Results 

 
To approach our goal of realizing a bound of 4V-17 or more edges for graphs with V 
vertices, we looked at some specific cases.  We began with K5, 5\ 3e for which E = 4V – 
18, because [CHPS] had already shown that all K5, 5\ 2e graphs are IK.  
 
 
Theorem 1.  Of the four graphs of the form K5, 5\ 3e exactly one is IK. 
 
Proof:     There are four different ways to remove three edges from a bipartite graph. 
These complement graphs are shown below: 
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Case 4

�

Case 3

�
Case 2

�
Case 1

�

A

�

C

�

B

�

D

 
 
Case 1 was shown to be not IK in [CHPS]. 
 
We can show that Cases 2 and 3 are not IK by Lemma 2.  According to this lemma, if we 
take away two vertices, and are able to draw the remaining graph in a plane, then the 
original graph is not IK.  The vertices that will be removed are labeled A - D and will not 
be shown in the planar graphs below Please note that the graphs below are not 
complement graphs. 
      
 
�

Case 2

  

�
Case 3

 
 
Note that Case 4, only, is IK, as it has the KS graph H9 as a minor. This was shown in 
figure 8 of [MOR]. �  
 
In terms of our conjecture that a bipartite graph with E ≥ 4V-17 is intrinsically knotted, 
this result brings us closer by allowing us to show that for K5, 5\ 3e, the bound E ≥ 4V-18 
does not always work.  We do, however, know that the bound E ≥ 4V-17 (e.g., K5, 5\ 2e) 
does hold for graphs that have exactly 5 vertices in one part and at least 5 in the other. 
This was shown in [CHPS].   
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Theorem 2.  Any graph of the form K6,6 \ 5e is IK. 
 
Proof:   Let H’ (Figure 1) be a K6,6 \ 12e graph that has an H9 minor.  Recall that H9 is 
IK [KS] and that any graph we attain from H9 through vertex expansions and additions is 
also IK.  We will list all ways to remove five edges and demonstrate that every case but 
one (the first case below which has an F’ subgraph) has an H’ subgraph.  In each such 
case, these five edges form a subset of edges contained in the complement of H’, 
H’c.  The edges of H’c are shown in Figure 2 below.  
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      Figure 1.  H’          Figure 2.  H’c 
 
To determine all possible ways to remove 5 edges from K6,6, first let a1, …, a6 be the 
vertices from one part and b1, …, b6 from the other part of the graph K6,6 \ 5e. Now 
consider any partition of 5 and take the i-th element in a partition to be the number of 
edges removed from the i-th vertex (for convenience, we have used top-down ordering) 
in the first part of K6,6.  Likewise, consider another partition and allow its entries to 
correspond to the number of edges removed from the other part of K6,6.  Some 
combinations will yield complement graphs of K6,6 \ 5e that cannot be realized (for 
instance, the pairing {{5}, {2,2,1}} cannot be constructed).  We have observed that there 
may be more than one graph that can be constructed given a pairing.  Below we have 
indicated the pairing of partitions of 5 for each of the 20 cases. 
 
In addition, many of these graphs can be shown to be IK using Corollary 2.5 of [CHPS] 
which states that a K6,5 graph with two or fewer edges removed is IK. In those cases, the 
list below specifies which vertex to remove to arrive at such a K6,5.  We apply the vertex 
labeling convention described above: 

 
1.    K6,6-{(a1,b4),(a2,b5),(a4,b1),(a5,b2),(a6,b6)};    {{1,1,1,1,1},{1,1,1,1,1}} 
2.    K6,6-{(a1,b5),(a2,b5),(a4,b4),(a5,b1),(a6,b6)};    {{2,1,1,1},{1,1,1,1,1}} 
3.    K6,6-{(a1,b5),(a2,b5),(a4,b1),(a5,b1),(a6,b6)};    {{2,2,1},{1,1,1,1,1}} 
4.    K6,6-{(a1,b5),(a2,b5),(a5,b1),(a5,b2),(a6,b6)};    {{2,1,1,1},{1,1,2,1}} 
5.    K6,6-{(a2,b5),(a4,b1),(a5,b1),(a5,b2),(a6,b6)};    {{2,1,1,1},{1,2,1,1}} 
6.    K6,6-{(a1,b5),(a2,b5),(a5,b1),(a5,b2),(a6,b6)};    {{2,1,2},{1,2,1,1}} 

7.    K6,6-{(a1,b5),(a2,b5),(a5,b1),(a5,b2),(a5,b3)};    {{2,1,1,1},{1,1,3}} 
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Or remove vertex a3 to obtain a K6,5 \ 2e graph which we know to be IK 
(Corollary 2.5, [CHPS]). 
8.    K6,6-{(a1,b4),(a1,b5),(a5,b1),(a5,b2),(a5,b3)};    {{2,3},{1,1,1,1,1}} 

Or remove vertex a3 [CHPS]. 
9.    K6,6-{(a1,b5),(a4,b1),(a4,b4),(a4,b5),(a5,b1)};    {{3,1,1},{1,2,2}} 

Or remove vertex a1 [CHPS]. 
10.  K6,6-{(a4,b1),(a4,b4),(a4,b5),(a5,b1),(a6,b6)};    {{3,1,1},{1,1,2,1}} 

Or remove vertex a1 [CHPS]. 
11.  K6,6-{(a4,b4),(a5,b1),(a5,b2),(a5,b3),(a6,b6)};    {{3,1,1},{1,1,1,1,1}} 

Or remove vertex a1 [CHPS]. 
12.  K6,6-{(a1,b4),(a1,b5),(a5,b1),(a5,b2),(a5,b4)};    {{2,3},{1,2,1,1}} 

Or remove vertex a3 [CHPS]. 
13.  K6,6-{(a1,b4),(a5,b1),(a5,b2),(a5,b3),(a5,b4)};    {{1,4},{2,1,1,1}} 

Or remove vertex a2 [CHPS]. 
14.  K6,6-{(a5,b1),(a5,b2),(a5,b3),(a5,b4),(a6,b6)};    {{4,1},{1,1,1,1,1}} 

Or remove vertex a1 [CHPS]. 
15.  K6,6-{(a1,b1),(a1,b2),(a1,b3),(a1,b4),(a1,b5)}:    {{5},{1,1,1,1,1}} 

Remove the vertex a1 from original graph to obtain a complete K6,5 graph.  This 
graph has a K5,5 minor, which is known to be IK [S]. 

16.  K6,6-{(a1,b4),(a4,b1),(a4,b5),(a5,b1),(a5,b4)};    {{1,2,2},{2,2,1}} 

17.  K6,6-{(a1,b4),(a4,b1),(a5,b1),(a5,b4),(a6,b6)};    {{1,2,1,1},{2,2,1}} 

18.  K6,6-{(a1,b4),(a1,b5),(a2,b5),(a4,b4),(a4,b5)};    {{2,2,1},{2,3}} 

Or remove vertex b2 [CHPS]. 
19.  K6,6-{(a1,b4),(a1,b5),(a4,b4),(a4,b5),(a6,b6)};    {{2,2,1},{2,2,1}} 

20.  K6,6-{(a1,b4),(a4,b1),(a4,b4),(a4,b5),(a5,b4)};    {{1,3,1},{1,3,1}} 

Or remove vertex a2 [CHPS]. �  
 
 
Theorem 3.  A graph of the form K6,6 \ 6e is IK provided it is not the graph 
K6,6\{(a1,b1),(a2,b2),(a3,b3),(a4,b4),(a5,b5),(a6,b6)}. 
 
Proof:     Let F’ be a graph of the form K6,6 \ 12e having an F9 minor.  Similar to the 
method used for showing that K6,6 \ 5e was IK, we use graphs H’ and F’, obtained by 
performing vertex expansions and additions on H9 and F9. 
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          Figure 3.  F’           Figure 4.  F’c 
 
Unlike the proof for K6,6 \ 5e, we do not make an exhaustive list of all ways to remove six 
edges from K6,6: we may remove a vertex with three edges missing from the original 
graph to obtain a K6,5 \ 3e subgraph, which we know to be IK from Corollary 2.5 of 
[CHPS].  Similarly, a graph having a vertex with four, five, or six edges missing from it 
is IK.   
 
Here all remaining cases use H’ to show the graph is IK except for case 10, which uses F’.   
 
We considered partitions of 6 to find all ways to remove six edges from K6,6.  We found 
16 cases to consider: 
 
1.    K6,6-{(a1,b4),(a2,b5),(a4,b1),(a4,b4),(a5,b2),(a6,b6)};    {{2,1,1,1,1},{1,1,1,1,1,1}} 
2.    K6,6-{(a1,b4),(a2,b5),(a3,b5),(a4,b1),(a5,b4),(a6,b6)};    {{2,2,1,1},{1,1,1,1,1,1}} 
3.    K6,6-{(a1,b5),(a2,b5),(a4,b1),(a4,b4),(a5,b3),(a6,b6)};    {{2,1,1,1,1},{1,1,2,1,1}} 
4.    K6,6-{(a1,b4),(a2,b5),(a4,b1),(a4,b4),(a5,b2),(a6,b6)};    {{2,1,1,1,1},{1,2,1,1,1}} 
5.    K6,6-{(a1,b4),(a3,b5),(a4,b1),(a5,b1),(a5,b4),(a6,b6)};    {{2,2,1,1},{1,2,1,1,1}} 
6.    K6,6-{(a1,b4),(a2,b5),(a3,b5),(a5,b1),(a5,b4),(a6,b6)};    {{2,1,2,1},{1,2,1,1,1}} 
7.    K6,6-{(a1,b4),(a2,b5),(a3,b5),(a4,b1),(a5,b1),(a5,b4)};    {{2,2,2},{1,2,1,1,1}} 
8.    K6,6-{(a2,b5),(a3,b5),(a4,b1),(a4,b4),(a5,b1),(a5,b2)};    {{2,2,1,1},{1,2,1,2}} 
9.    K6,6-{(a3,b1),(a3,b5),(a5,b2),(a5,b4),(a6,b3),(a6,b6)};    {{2,2,2},{1,1,1,1,1,1}} 
10.  K6,6-{(a1,b4),(a2,b5),(a3,b5),(a4,b4),(a5,b1),(a5,b2)};    {{2,1,1,2},{1,1,2,1,1}} 
11.  K6,6-{(a1,b4),(a2,b5),(a4,b1),(a4,b5),(a5,b2),(a5,b4)};    {{2,1,2,1},{1,2,1,2}} 
12.  K6,6-{(a1,b4),(a1,b5),(a2,b5),(a5,b1),(a5,b4),(a6,b6)};    {{2,2,1,1},{1,2,2,1}} 
13.  K6,6-{(a1,b4),(a2,b5),(a4,b1),(a4,b5),(a5,b1),(a5,b4)};    {{2,2,2},{1,2,2,1}} 
14.  K6,6-{(a1,b5),(a1,b4),(a4,b4),(a4,b5),(a5,b1),(a6,b6)};    {{2,2,1,1},{2,2,1,1}} 
15.  K6,6-{(a1,b5),(a2,b5),(a4,b1),(a4,b4),(a5,b1),(a5,b4)};    {{2,2,2},{2,2,1,1}} 
16.  K6,6-{(a1,b4),(a1,b5),(a4,b1),(a4,b5),(a5,b1),(a5,b4)};    {{2,2,2},{2,2,2}} 
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The graph K6,6\{(a1,b1),(a2,b2),(a3,b3),(a4,b4),(a5,b5),(a6,b6)} was the only K6,6 \ 6e graph 
for which this method was not successful.  We have yet to determine whether this graph 
is IK or not. �  
 
We shall henceforth refer to the graph K6,6\{(a1,b1),(a2,b2),(a3,b3),(a4,b4),(a5,b5),(a6,b6)} as 
G666. 
 
 
Theorem 4.  Any graph of the form K7,7 \ 10e is IK. 
 
Proof:  We proceed by deleting vertices and the edges connected to them from K7,7 \ 10e.  
If three or more deleted edges come from a single vertex, that vertex may be removed to 
obtain a K7,6 \ me subgraph with m ≤ 7, shown to be IK in Theorem 5, below.  Now 
assume that each vertex has at most two edges removed.  We can then remove a vertex 
from each side, removing four distinct edges, resulting in a K6,6 \ 6e subgraph. We may 
assume this graph is G666 as otherwise the original graph has an IK subgraph and is 
therefore IK.  
 
Below we present the three ways to remove 2 vertices from K7,7\10e and attain the graph 
G666. Remove the circled vertices instead.    
 

�  
 

4. General Results 
 

In this section we present some general results.   
 
 
Theorem 5.  K6+n, 6\ (2n + 5)e is IK where n ≥ 1. 
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Proof:     (by Induction on n) 
 
For the base case, let n = 1. We will look at four subcases: 
 
 Case 1:  Consider the K7, 6\ 7e graph where each of the 7 a-vertices has exactly 
one edge removed, and exactly one of the 6 b-vertices (call it b6) has exactly 2 edges 
removed. 
 
We can remove one vertex to show that this graph has a K6, 6\ 6e minor, all of which have 
been show to be IK, except  G666. We can avoid this case by not removing one of the two 
a-vertices that is connected, in our complement graph, to b6.  Removing any of the other 
a-vertices will leave us with one of the K6, 6\ 6e graphs which is known to be IK 
 
 Case 2:  Consider the K7, 6\ 7e graphs where each of the 7 a-vertices has exactly 
one edge removed and at least 1 of the b-vertices has 3 or more edges removed.  We can 
choose any a-vertex to remove, because in any case we will have a K6, 6\ 6e minor that is 
known to be IK.   
 
 Case 3:  Consider the K7, 6\ 7e graphs where each of the 7 a-vertices has exactly 
one edge removed and at least 2 b-vertices have at least 2 missing edges.  We can remove 
any of the a-vertices, because in any case we will have a K6, 6\ 6e minor that is known to 
be IK.   
 
 Case 4:  Consider the K7, 6\ 7e graphs where one or more of the 7 a-vertices has 
more than one edge removed.  By removing one of those vertices, we will be left with a 
K6, 6\ me minor where m < 6, all of which are known to be IK. 
 
As these four cases cover all possibilities, we’ve shown that all the K7, 6\ 7e graphs are IK. 
 
Now, for the inductive step, let n≥1 and assume all graphs of the form    
K6+n, 6\(2n + 5)e are IK. Using Lemma 1 with a = 6 + n, b = 6, m = 2n + 5, and k = 2, we 
can show that every K6+n+1, 6\ (2(n+1) + 5)e graph G is also IK. 
 
Thus, by induction K6+n, 6\(2n + 5)e is IK for every n≥1. �  
 
Theorem 2 shows that the above result is also true when n = 0.   
 
Corollary 1: A bipartite graph with exactly 6 vertices in one part and at least 6 vertices 
in the other part and E ≥ 4V–17 is IK.  
 
Now we have shown that our conjecture holds for at least the case of the K6+n, 6 graphs. 
 
 
Theorem 6.  K7+n, 7\ (2n + 10)e is IK where n ≥ 1. 
 
Proof:     (by Induction on n) 
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For the base case, let n = 1. This gives us a K8, 7\12e graph. We know using Lemma 1 
(with a = b = 7, m = 10, and k = 2) and Theorem 4 that K8, 7\12e is IK. 
 
Now, for the inductive step, let n ≥ 1 and assume all graphs of the form K7+n, 7\(2n + 10)e 
are IK. Using Lemma 1 with a = 7 + n, b = 7, m = 2n + 10 and k = 2, we can show that 
every K7+n+1, 7\ (2(n + 1) + 10)e graph G is also IK. �  
 
Note that Theorem 4, which proves that K7, 7\10e is IK, is the case of this theorem where 
n = 0. 
 
Although this Theorem does not allow us to prove our conjecture in this case, it does 
improve the previous best known bound (for graphs in general) [CMOPRW] of E ≥ 5V-14  
 
Corollary 2: A bipartite graph with exactly 7 vertices in one part and at least 7 vertices 
in the other part and E ≥ 5V – 31 is IK.  
 
 
Theorem 7.  K8+n, 8\ (2n + 15)e is IK where n≥1. 
 
Proof:     (by Induction on n) 
 
For the base case, let n = 1. This gives us a K9, 8\17e graph. We know from Theorem 6 
that K9, 7\14e is IK. Applying Lemma 1 with a = 7, b = 9, m = 14, and k = 3, we can get a 
K9, 7\14e subgraph, which is IK, so our graph is IK. 
 
Now, for the inductive step, let n ≥ 1 and assume all graphs of the form K8+n, 8\(2n + 15)e 
are IK. Using Lemma 1 with a = 8 + n, b = 8, m = 2n + 15, and k = 2, we can show that 
every K8+n+1, 8\ (2(n + 1) + 15)e graph G is also IK. �  
 
As far as we know, Theorem 7 does not hold when n = 0.  We do, however, know that 
K8,8\14e is IK (use Lemma 1 and that K8,7\12e is IK by Theorem 6).   
 
 
Theorem 8.  Any graph of the form Ka, a\ (6a -34)e is IK where a≥9.  
 
Proof:     (by Induction on a) 
 
For the base case, let a = 9.  
 
 Consider a K9, 9\20e graph.  We have shown, through Theorem 7, that K9,8\17e is 
IK.  By Lemma 1, with k = 3, if K9,8\17e is IK, then K9, 9\ 20e is also IK. 
  

Now, for the inductive step, let a≥9 and assume all graphs of the form    
Ka, a\(6a -34)e are IK. We will show that every Ka+1, a+1\ (6(a + 1) - 34)e graph G is IK. 
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We have assumed that all graphs of the form Ka, a\ (6a - 34)e are IK, where a is the 
number of vertices in each part. Applying Lemma 1 (with k = 3) shows that every 
Ka+1,a\(6a – 31) graph is IK.  Applying the lemma one more time, with m = 6a-31 and k = 
3, gives us that all Ka+1,a+1\(6a - 28) graphs are IK.  Since 6a – 28 is 6(a+1) – 34, this 
means that every Ka+1, a+1\(6(a+1) - 34)e graph G is IK. 
 
  Thus, by induction Ka, a\(6a -34)e is IK for all a ≥ 9. �  
 
 
Theorem 9.  Any graph of the form Ka+n, a\(3n + 6a-34)e is IK where a ≥ 9 and n ≥ 0. 
 
Proof:     (by Induction on n) 
 
For the base case, let n = 0.  This gives us a Ka,a\(6a-34)e graph.  This is IK by Theorem 8. 
 
Now, for the inductive step, assume that Ka+n, a\(3n + 6a-34)e is IK.  Now, look at 
Ka+n+1,a\(3(n + 1) + 6a-34)e.  This can be a Ka+n+1,a\(3n + 6a-31)e.  Using Lemma 1, 
Ka+n+1,a\(3n + 6a-31)e is IK provided (3n + 6a-31) is more than twice (a + n + 1).  This is 
true when a = 9: 3n + 23 is larger than n + 10.  Each time a increases by one, 3n + 6a-31 
will increase by 6 while the 2(a + n + 1) will only increase by 2.  So, by induction, the 
inequality for Lemma 1 holds and Ka+n+1,a\ (3n+6a-31)e is IK. �  
 
 

b/a 6 7 8 9 10 11 12 13 14 

6 6* 7 9 11 13 15 17 19 21 
7  10 12 14 16 18 20 23 25 
8   14 17 19 21 23 26 29 
9    20 23 26 29 32 35 
10     26 29 32 35 38 
11      32 35 38 41 
12       38 41 44 
13        44 47 
14         50 

 

TABLE 1. Ka,b/me known to be IK 
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Certain entries of Table 1 are improvements on the general results of Theorems 5 to 9. 
Those entries were achieved by applying Lemma 1. 
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