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Abstract

We develop a theorem for determining the p-colorability of any (m,n)
torus knot. We also prove that any p-colorable (m,n) torus knot has
exactly one p-coloring class. Finally, we show that every p-coloring of the
braid projection of an (m,n) torus knot must use all of the p colors.
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1 Introduction

Our first result is a theorem specifically determining the p-colorability of any
(m,n) torus knot. It has been previously shown that a (m,m — 1) torus knot is
always p-colorable for p equal to m or m — 1 depending on which is odd (see [5]
and [10]). Another proven result is that a (2,7n) torus knot is always p-colorable
for p equal to n and a (3,n) torus knot is always 3-colorable if n is even [10]. A
result similar to ours was also stated as a lemma without proof in [3].

Our second result shows that any p-colorable (m,n) torus knot has only one
p-coloring class. A general result investigating colorings of torus knots by finite
Alexander quandles appears in [2]. Our result is a special instance of this result;
however, we present a proof using only elementary techniques. p-coloring classes
have also previously been investigated in relationship to pretzel knots by [4].

Using our second result, we were also able to show a minor result concerning
the distribution of colors in a p-coloring of a torus knot. We showed that
any p-coloring of the braid representation of an (m,n) torus knot must use
each of the p colors. Distribution of colors in p-colorings of knots has been
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previously investigated with the Kauffman-Harary Conjecture. This conjecture
is concerned with the distribution of colors in a p-coloring of an alternating
knot with prime determinant. Asaeda, Przytcki, and Sikora prove the Harary-
Kauffman Conjecture is true for pretzel knots and Montesinos knots in [1].

2 Notation

For this paper we will define a knot diagram to be the projection of a knot from
3-space to the plane, where appropriate gaps are left at intersections to show
which parts of the knot pass over other parts. We will also define a strand to
be any connected component of a knot diagram.

Let G,(K) be the set of all p-colorings for a knot diagram K. Note that
Gp(K) is empty if K is not p-colorable. We wish to count the number of p-
colorings in G,(K) that differ by more than just a permutation of the colors.
To do this precisely, suppose Sk is the set of all strands of K. A p-coloring
of a knot diagram K is a map v : Sk — Z, satisfying the condition that
29(sj) — v(si) — ¥(sk) = 0 modp for all s;,s;,s, € Sk at a crossing of K,
where s; is the overcrossing strand and s;, s are the undercrossing strands. We
also require that at least 2 of of the colors assigned to s;, s;, s, be relatively
prime. It is an easy exercise to see that the relation ~ defined by v ~ § <=
v = pod for some permutation p: Z, — Z, for v,§ € G,(K) is an equivalence
relation on G,(K).

The p-coloring class of v € G,(K) is the set ¥ = {6 € Gp|d ~ ~v}. Two
p-colorings are said to be equivalent if they are in the same p-coloring class,
and fundamentally different if they are in different p-coloring classes. The set
of p-coloring classes for a given knot K will be denoted by Cp,(K). The number
of p-coloring classes for K will be denoted by |C,(K)|. It happens that this
definition of p-coloring classes corresponds directly to the mod p rank discussed
in chapter 3 of [8].

Let T}, n represent the torus knot characterized by the number of times m
that it circles around the meridian of the torus and the number of times n
that it circles around the longitude of the torus. T, , is a knot (rather than
a 2 component link) if and only if m and n are relatively prime. A braid is a
diagram of n strings which are attached to a horizontal bar at the top and the
bottom. Each string in a braid can only intersect a horizontal plane exactly
once. Connecting each of the strands on the top bar with the corresponding
strands on the bottom bar will yield a knot, known as the closure of the braid.
It is known that every knot is the closure of some braid (see chapter 3 of [g]).
For example, the trefoil knot is the closure of the braid shown in Figure 1.

The torus knot 15, ,, can be drawn as the closure of the n-strand braid word
(0109 Op—20,-1)™. We will refer to the word (o109 - - 0pp—20,—1) as the base
for the braid word of T}, ,, and say that a cycle is a single completion of the
base for the braid word of a knot T}, ,,. For the duration of the paper, any braid
representation of a knot T, , is considered to have n strands and m cycles,
where the 0" strand is the strand on the far left of the braid representation.
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Figure 1: The braid whose closure is the trefoil knot.

3 p-Colorability of Torus Knots

Since T}, p, is equivalent to T, ,,,, the following theorem completely characterizes
the p-colorability of torus knots.

Theorem 1. Suppose T, ,, s a torus knot and p is prime.
i) If m and n are both odd, then T, , is not p-colorable.
it) If m is odd and n is even, then Tp, , is p-colorable if and only if plm.

Note that if T}, , is a torus knot, as opposed to a link, then m and n are
relatively prime, and thus m and n cannot both be even. Results similar to
those in Theorem 1 were stated without proof by Asami and Satoh in [3].

It is well known that if p is a prime number, then a knot K is p-colorable
if and only if p divides det(K) (see chapter 3 of [8]). We will prove Theorem 1
by using the Alexander polynomial to show that det(7,,,,) is given as in the
following lemma.

Lemma 1. Given any torus knot Ty, ,,, we have

1, if m and n are both odd
m, if m s odd and n is even

det(Th ) = {

Proof. Given a knot K, it is well known that det(K) = |Ag(—1)|, where Ag(t)
is the Alexander polynomial of K (see [9]). It is also known that the Alexander
polynomical for a knot T}, ,, has the following formula

@ —-1)(t-1)

Ar,, . (t) = =) = 1) (1)

Therefore we can directly calculate the Alexander polynomial and hence the
determinant of Ty, .

Case 1. Suppose m and n are both odd. Then, det(Ti,,,) = Ar,, ,(—1) =
(=2)(=2) _
2y = L




Case 2. Suppose m is odd and n is even.

det(Tm7n) = ATnl,n (_1)
1 -1
= (TTL_—:—— ;—i_ mi (L’Hospital’s rule)
m+n)—m-+n
_ 2mn
- 2n

=m.

4 Counting p-Coloring Classes of Torus Knots

Our second result shows that every p-colorable torus knot has only one p-coloring
class.

Theorem 2. If p is prime and Ty, ts any p-colorable torus knot, then we have
|Cp(Tm,n)| =L

Theorem 2 is a special case of a result found by Asami and Kuga in [2]. They
prove that if a knot 7}, ,, can be p-colored using a finite Alexander quandle, it
has a total of p? trivial and non-trivial colorings. If T}, ,, cannot be colored by
such a quandle, then it has only the p trivial colorings. It is important to note
that Asami and Kuga only consider the total number of all p-colorings with-
out distinguishing between equivalent colorings, while we consider equivalence
classes of p-colorings, or p-coloring classes.

To prove Theorem 2 it suffices to show that if T}, ,, is p-colorable, then every
p-coloring of T, , is equivalent. To this end, in Section 4.1 we will exhibit a
specific p-coloring of T}, ,, called the main p-coloring. Then in Section 4.2 we
will prove Theorem 2 by showing that all p-colorings of T, , are equivalent to
the main p-coloring.

4.1 A main p-coloring for every torus knot

Given a torus knot T}, ,, consider two p-colorings o, § € Gy (Trn.n). Let o and
B{ be the colors of the i*" strand of any braid knot K after j cycles for the
p-colorings o and (3, respectively. Note that the p-colorings o and § are in the
same coloring class in C(T5, ) if and only if

ol =af = Bl =pf (2)

for all i,1 € {0,1,...,n—1} and j,k € {0,1,...,m}.

Given a p-colored braid representation of a knot T}, ,,, we will say that the
§*® color array of T, ,, is the element of (Z,)™ whose i component is the color
of the it! strand of the braid representation of T}, , after j cycles. For a knot



Figure 2: The action of ¢ on the j** color array of T}, ..

T'm.n to be p-colorable it is a necessary and sufficient condition that the initial
color array of its braid representation be exactly the same as its final color array.

Let (co,c1,--+ ,cn_1) be the j** color array for the braid representation of
some knot T}, ,,, and consider the map ¢ : (Z,)" — (Z,)" defined by

é(co,c1,- -+, en—1) = (2c0 — €1,2¢0 — €2, -+ ,2¢0 — Cp—1,Co)- (3)

Notice that ¢ is the map that, given the j* color array of a knot T}, ,,, returns
the (j+1)%* color array according the rules of p-colorability, as seen in Figure 2.
Define the map ¢’ to be the composition of j copies of ¢, or in other words:

¢ ( initial color array of T}, ,,) = j'" color array of T}, ,,.

A p-coloring of any knot T}, , is entirely determined by its initial color
array in a braid representation for T, ,. Furthermore, for a knot 7}, ,, to be
p-colorable, it is a necessary and sufficient condition that we have ¢™ = id when
applied to the initial color array of the braid representation.

We now consider a second n-tuple that can be defined from the braid repre-
sentation of a p-colored knot T, ,,. The color variance between any two adjacent
strands in the projection colored with ¢; and c; respectively is ¢; — ¢; modp.
(We consider the far left and far right strands to be adjacent.) Given a p-colored
braid representation of a knot T}, ,, the jth variance vector of T,  is the ele-
ment of (Z,)" whose i*" component is the color variance between the (i — 1)t
and it" strands after j cycles. The 0" variance vector of T}, , is referred to
as the initial variance vector. A constant variance vector is a variance vector
V = (vo,v1, -+ ,Upn—1) where vg =v1 = -+ =vp_1. If (co,c1,"** ,Cn—2,Cn—1) I8
the j'" color array for some knot T, ., then the j*® variance vector for Tp, ,, is

(v0, V1, ,Un—2,Un—1) = (€1 — €0, C2 — €1, *+ ,Cp—1 — Cn—2,C0 — Cn—1). (4)

Let : (Zp)"™ — (Z,)™ denote the map that takes as input the j* variance
vector of a knot T}, ,, and returns the (j+ 1) variance vector. By Equations (3)
and (4) we have:

(v, V1, ,Vn—2,Un-1) = ((2c0 — c2) — (2c0 — 1), (20 — ¢3) — (2¢0 — €2),
-, c0 — (2¢0 — cn—1),(2c0 — 1) — ¢o
= (c1 —c2,c2 — €3, ,Cp_1 — €, Co — C1)

(_vlv —V2,, =Un—1, _UO)'
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Figure 3: The action of ¢ on the j'" variance vector of Ty, .

Figure 3 shows how Equation (5) looks as we move from the j* to the (j + 1)
variance vector. In this figure, the color variance v; between the (i — 1) and
i*h strands is shown between those two strands.

We define 97 : (Z,)" — (Z,)"™ to be the composition of j copies of 1. Since
for every application of 1 to (vg,v1, -+ ,v,—1), all entries get multiplied by —1
and move over one position to the left while wrapping around, we have that
Y7 (vo,v1, -+ ,vn_1) acts such that for all i € {0,1,--- ,n —1}

v; — (=1)7Vitj modn- (5)

In a more general form this means that

; Viy Vg, V0, V1, " Ui if j is even
_ (J7 J+1s » Y0, U1, s Vg 1)5 J

1/)J(1}0,’Ul," : avnfl) = . . ; if 7 dd

(_U]7_U]+17"' , —V0, —U1," 7_U]—1)7 17150 ’

where all subscripts are taken modulo n.

Given a p-colorable torus knot 75, ,,, we can assume without loss of generality
that m is even and n is odd. We will now exhibit a specific p-coloring of Ty, ,, for
every prime p that divides n, called the main p-coloring of Ty, ,. Since p divides
n there exists r € ZT such that n = rp. Consider the braid representation of
Ton.n With n strands and m cycles whose initial, or 0**, color array M is the
n-tuple whose entries are the series 0,1,--- ,p — 2,p — 1, repeated r times:

M = (0715 ap_2ap_150715"' ap_la"' 7p_27p_1) (6)
Using Equation (3) we can deduce that the 15 color array of Ty, ,, is

¢(M) =¢(0,1,---,p=2,p=1,0,1,--- ,p=1,--- . p=2,p—1)
=(2(0) — 1,2(0) — 2,---,2(0) — (p—1),2(0) — 0,

2(0) —1,2(0) — 2,---,2(0) —0,---,2(0) — (p—1),0)
=(-1,-2,---,—(p—1),0,—1,-2,--- ,0,--- ,—(p—1),0)

:(p—l,p—Q,"',1,0,p—1,p—2,"',0,"',1,0)-



Note that the 24 color array of T, ,, is

9(

:¢(p_1,p_27... ,1,0,p—1,p—2,---,0,--- ,170)

=Q2p-1)—-@-2).200-1)-@®-3),,2(p—1) -0,
2p-1)-p-1,20-1)—-(-2),20-1)—(p—3), -,
20-1) (-1, .,2(p—1)-0,(p—1))

=(pp+1,--,2p—2,2p—1L,pp+1,--- ,2p—1,--- ,2p—2,p—1)

:(071,... ,p—2,p—1,0,1,--- ,p—1,--- 7]9_27]9_1)

= M.

4.2 Every p-coloring of a torus knot is equivalent to the
main p-coloring

To prove Theorem 2 it suffices to show that if 7}, ,, is p-colorable, then every

p-coloring of T}, , is equivalent to the main p-coloring of 1), ,. Notice that

the initial variance vector for the main p-coloring of a knot 75, , as defined

in Equation (6) is the constant variance vector (1,1,---,1). Our first step in
proving Theorem 2 will be to prove the following lemma.

Lemma 2. Suppose Ty, is a p-colorable torus knot where p is prime, and
consider the n-strand braid representation of Ty, . If the initial color array
of the p-coloring has a constant variance vector, then that initial color array
induces a p-coloring that is equivalent to the main p-coloring of Ty, r.

Proof. Let C' be an initial color array of T}, , with constant variance vector
(v,v,...,v). The for some a € Z, we can write C as

C=(a+0v,a+uv, - ,a+ (n—2)v,a+ (n—1)v). (7)
The first color array of T}, , with this p-coloring is

o(C)=d(a,a+v, -+ ,a+ (n—2)v,a+ (n—1)v)

=(2a— (a+v),2a — (a4 2v), -+ ,2a— (a+ (n — 1)v),a)
=(a—v,a—2v,--+,a— (n—1)v,a)
= (

a+(n—1)v,a+ (n—2)v, - ,a+v,a). (8)

Notice that ¢ reverses the order of the entries in C. Applying ¢ again, we see



that the second color array is

¢*(C)
=¢(a—v,a—2v,--- ;a— (n—1)v,a)
=(2(a—v)—(a—2v),2(a—v) — (a—3v),---,2(a —v) —a,a —v)
=(a,a+v, - ,a+ (n—3)v,a —2v,a — v)notag 9)
=(a,a4uv,--,a+ (n—-3)v,a+ (n—2)v,a+ (n—1)v)
=C. (10)
Thus we can see that ¢> = id when applied to color arrays with constant
variance.

Since p is prime, there exists ¢t € Z, such that a = tv modp. Thus, C' =
(tv, tv+v, tv+2v, - - - Jtv+(n—1)v) = (tv, (t+1)v, (t+2)v, -+, (t+(n—1))v). We
know if v € Z,/{0} and p is prime, then (v) = Z,. Therefore the first p entries
of C are distinct elements of Z,. Moreover, since p divides n, C' is comprised of
this exact pattern of all of Z, repeated precisely % times. Therefore,

C = (co,C1, " Cp—2,Cp—1,C€0,C1," "+ ,Cp—1," " ;Cp—2,Cp—1) (11)

where cg, c1,- - ,cp—1 repeats % times. Since cg,c1,- - ,cp—1 are distinct, we
know that for < € {0,1,---,p — 1} we have

Ci =Cj < 1 =]. (12)

Using the notation in Equation (12), and the results in Equations (8) and (10),
we see that the ;' color array for the p-coloring induced by the initial color
array C is

¢J(O) . (007017" * 5 Cp—2,Cp—1,C0,C1," " ,Cp—1,""" 7cp—2ucp—l)7 lf] is even
(Cp—lacp—Qa" ©5C1,C0,Cp—1,Cp—2,""" ,C0, """ 701700)7 lf] is odd.

On the other hand, from Section 4.1 we know that the ;' color array for
the main p-coloring induced by the initial color array M from Equation (6) is

¢ (M) = 0,1,---,p—2,p—1,0,1,--- ,p—1,--- ,p—2,p—1), if jiseven
— (p—1,p—2,---,1,0,p—1,p—2,---,0,---,1,0), if jis odd.

We wish to prove that C and M induce equivalent p-colorings in terms of
the condition in Equation (2). Let m; : (Z,)" — (Z,) be the i*" projection map,
and let ¢/ = m0¢7 : (Z,)" — (Z,). Notice that ¢/ takes in an initial color array
and returns the color of the i*" strand of the 5" color array of the induced p-

coloring. From the expression for ¢’/ (C') above, we see that for j € {0,1,--- ,m}
and ¢ € {0,1,--- ,n— 1} we have
#(C) = ci modp, if jis even (13)
i " | ¢p—1—i modp, ifjisodd.



Similarly, from the expression for ¢/ (M) above, we see that

j . tmodp, if jiseven
¢i(M)_{ p—1—imodp, ifjisodd. (14)

It is now easy to see from Equations (12), (13), and (14) that we have
1 (M) = 6 (M) = ¢](C) = ¢/ (C)

for j,k € {0,1,--- ,m} and i,l € {0,1,--- ,n — 1}. Therefore by Equation (2)
we know that C' and M induce equivalent p-colorings on Ty, . O

We will now use Lemma 2 to prove Theorem 2. The key will be to show
that there cannot be a p-coloring of T, ,, that does not have a constant variance
vector.

Proof. Suppose T}, 5 is a p-colorable torus knot, and consider the n-strand braid
representation of Tp, ,,. By Theorem 1 we can assume without loss of generality
that n is odd and m is even, and that p divides n. Seeking a contradiction,
assume that |Cp(Tyn,n)| > 1. Specifically, assume there is a p-coloring v €
Gp(Tn,n) that is fundamentally different from the main p-coloring of T, .
Let G = (90,91, s Gn—2,gn—1) be the initial color array for v, and let V =
(U07'Uh ct 5, Un—2, vnfl) = (91 — 90,92 — 91, y9n—1 — Yn—-2,90 — gn71) be the
initial variance vector for .

Using ¢ as defined in Equation (5) we can apply ¥7 to V to get the ¢*™®
variance vector of v (where all subscripts are taken mod n):

wq(v): (Uq7Uq+17"' , Vo, V1, - 7Uq—1)7 1fqlS even
(_vlb —Vg+41,° ", —V0, V1, ", _’Uqfl)a if q is odd.

Let r be the smallest positive integer for which V' partitions into s repeating
sections of length r. Note that 1 <r < n and that n = rs. Since by hypothesis
v is not equivalent to the main p-coloring of T}, ,, Lemma 2 tells us that the
variance vector V is not constant. Therefore we have r > 1.

Since m is even, we know from Equation (3) that

(bm(v) = (’Umav’m+1a 5,00, U1, 0 ;v’mfl)-

In other words, ¢™ turns the initial variance vector V into the vector where all
entries have been shifted to the left m positions and wrapped around. Because
m is the number of cycles in our braid representation, and ~ is a p-coloring of
Tn.n, we must have ™ (V) = V. In order for this to occur, ¥™ must shift V'
over by some multiple of r, the length of a repeating section. Therefore we must
have m = kr for some k € Z*.

We have now shown that n = rs, m = kr, and r > 1; these facts imply that
ged (m,n) > r > 1. But this contradicts our assumption that Ty, , is a knot and
not a link. Therefore, there cannot exist a p-coloring v that is fundamentally
different from the main coloring, and hence we must have |Cp(T), )| =1. O



Because the main p-coloring of a torus knot 7}, ,, uses all p colors, and every
p-coloring that is equivalent to the main coloring must also use all p colors, we
have the following immediate corollary to Theorem 2.

Corollary 3. Every p-coloring of a braid projection of knot T, , must use all
p colors.

5 Questions for future research

1. What is the significance of the color distribution in Corollary 3 and what
other knots have a similar color distribution?

2. Do variance vectors have useful applications to other types of knots, es-
pecially those whose braid word is some power of a base word?

3. What other types of p-colorable knots have only one p-coloring class?
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