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Abstract

We develop a theorem for determining the p-colorability of any (m,n)
torus knot. We also prove that any p-colorable (m, n) torus knot has
exactly one p-coloring class. Finally, we show that every p-coloring of the
braid projection of an (m, n) torus knot must use all of the p colors.
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1 Introduction

Our first result is a theorem specifically determining the p-colorability of any
(m,n) torus knot. It has been previously shown that a (m,m− 1) torus knot is
always p-colorable for p equal to m or m− 1 depending on which is odd (see [5]
and [10]). Another proven result is that a (2, n) torus knot is always p-colorable
for p equal to n and a (3, n) torus knot is always 3-colorable if n is even [10]. A
result similar to ours was also stated as a lemma without proof in [3].

Our second result shows that any p-colorable (m,n) torus knot has only one
p-coloring class. A general result investigating colorings of torus knots by finite
Alexander quandles appears in [2]. Our result is a special instance of this result;
however, we present a proof using only elementary techniques. p-coloring classes
have also previously been investigated in relationship to pretzel knots by [4].

Using our second result, we were also able to show a minor result concerning
the distribution of colors in a p-coloring of a torus knot. We showed that
any p-coloring of the braid representation of an (m,n) torus knot must use
each of the p colors. Distribution of colors in p-colorings of knots has been

∗Department of Mathematics, Willamette College, Salem, OR 97301;

abreilan@willamette.edu
†Department of Mathematics and Computer Science, Pomona College, Claremont, CA

91711; layla.oesper@pomona.edu
‡Department of Mathematics and Statistics, James Madison University, MSC 7803, Har-

risonburg, VA 22801; taal@math.jmu.edu. PLEASE SEND MANUSCRIPT PROOFS TO

THIS AUTHOR.

1



previously investigated with the Kauffman-Harary Conjecture. This conjecture
is concerned with the distribution of colors in a p-coloring of an alternating
knot with prime determinant. Asaeda, Przytcki, and Sikora prove the Harary-
Kauffman Conjecture is true for pretzel knots and Montesinos knots in [1].

2 Notation

For this paper we will define a knot diagram to be the projection of a knot from
3-space to the plane, where appropriate gaps are left at intersections to show
which parts of the knot pass over other parts. We will also define a strand to
be any connected component of a knot diagram.

Let Gp(K) be the set of all p-colorings for a knot diagram K. Note that
Gp(K) is empty if K is not p-colorable. We wish to count the number of p-
colorings in Gp(K) that differ by more than just a permutation of the colors.
To do this precisely, suppose SK is the set of all strands of K. A p-coloring
of a knot diagram K is a map γ : SK → Zp satisfying the condition that
2γ(sj) − γ(si) − γ(sk) = 0 mod p for all si, sj , sk ∈ Sk at a crossing of K,
where sj is the overcrossing strand and si, sk are the undercrossing strands. We
also require that at least 2 of of the colors assigned to si, sj , sk be relatively
prime. It is an easy exercise to see that the relation ∼ defined by γ ∼ δ ⇐⇒
γ = ρ ◦ δ for some permutation ρ : Zp → Zp for γ, δ ∈ Gp(K) is an equivalence
relation on Gp(K).

The p-coloring class of γ ∈ Gp(K) is the set γ̄ = {δ ∈ Gp|δ ∼ γ}. Two
p-colorings are said to be equivalent if they are in the same p-coloring class,
and fundamentally different if they are in different p-coloring classes. The set
of p-coloring classes for a given knot K will be denoted by Cp(K). The number
of p-coloring classes for K will be denoted by |Cp(K)|. It happens that this
definition of p-coloring classes corresponds directly to the mod p rank discussed
in chapter 3 of [8].

Let Tm,n represent the torus knot characterized by the number of times m
that it circles around the meridian of the torus and the number of times n
that it circles around the longitude of the torus. Tm,n is a knot (rather than
a 2 component link) if and only if m and n are relatively prime. A braid is a
diagram of n strings which are attached to a horizontal bar at the top and the
bottom. Each string in a braid can only intersect a horizontal plane exactly
once. Connecting each of the strands on the top bar with the corresponding
strands on the bottom bar will yield a knot, known as the closure of the braid.
It is known that every knot is the closure of some braid (see chapter 3 of [8]).
For example, the trefoil knot is the closure of the braid shown in Figure 1.

The torus knot Tm,n can be drawn as the closure of the n-strand braid word
(σ1σ2 · · ·σn−2σn−1)

m. We will refer to the word (σ1σ2 · · ·σn−2σn−1) as the base
for the braid word of Tm,n, and say that a cycle is a single completion of the
base for the braid word of a knot Tm,n. For the duration of the paper, any braid
representation of a knot Tm,n is considered to have n strands and m cycles,
where the 0th strand is the strand on the far left of the braid representation.
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Figure 1: The braid whose closure is the trefoil knot.

3 p-Colorability of Torus Knots

Since Tm,n is equivalent to Tn,m, the following theorem completely characterizes
the p-colorability of torus knots.

Theorem 1. Suppose Tm,n is a torus knot and p is prime.

i) If m and n are both odd, then Tm,n is not p-colorable.

ii) If m is odd and n is even, then Tm,n is p-colorable if and only if p|m.

Note that if Tm,n is a torus knot, as opposed to a link, then m and n are
relatively prime, and thus m and n cannot both be even. Results similar to
those in Theorem 1 were stated without proof by Asami and Satoh in [3].

It is well known that if p is a prime number, then a knot K is p-colorable
if and only if p divides det(K) (see chapter 3 of [8]). We will prove Theorem 1
by using the Alexander polynomial to show that det(Tm,n) is given as in the
following lemma.

Lemma 1. Given any torus knot Tm,n, we have

det(Tm,n) =

{

1, if m and n are both odd
m, if m is odd and n is even

Proof. Given a knot K, it is well known that det(K) = |∆K(−1)|, where ∆K(t)
is the Alexander polynomial of K (see [9]). It is also known that the Alexander
polynomical for a knot Tm,n has the following formula

∆Tm,n
(t) =

(tmn − 1)(t− 1)

(tm − 1)(tn − 1)
. (1)

Therefore we can directly calculate the Alexander polynomial and hence the
determinant of Tm,n.

Case 1. Suppose m and n are both odd. Then, det(Tm,n) = ∆Tm,n
(−1) =

(−2)(−2)
(−2)(−2) = 1.
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Case 2. Suppose m is odd and n is even.

det(Tm,n) = ∆Tm,n
(−1)

=
(mn+ 1) +mn− 1

(m+ n) −m+ n
(L’Hospital’s rule)

=
2mn

2n
= m.

4 Counting p-Coloring Classes of Torus Knots

Our second result shows that every p-colorable torus knot has only one p-coloring
class.

Theorem 2. If p is prime and Tm,n is any p-colorable torus knot, then we have
|Cp(Tm,n)| = 1.

Theorem 2 is a special case of a result found by Asami and Kuga in [2]. They
prove that if a knot Tm,n can be p-colored using a finite Alexander quandle, it
has a total of p2 trivial and non-trivial colorings. If Tm,n cannot be colored by
such a quandle, then it has only the p trivial colorings. It is important to note
that Asami and Kuga only consider the total number of all p-colorings with-
out distinguishing between equivalent colorings, while we consider equivalence
classes of p-colorings, or p-coloring classes.

To prove Theorem 2 it suffices to show that if Tm,n is p-colorable, then every
p-coloring of Tm,n is equivalent. To this end, in Section 4.1 we will exhibit a
specific p-coloring of Tm,n called the main p-coloring. Then in Section 4.2 we
will prove Theorem 2 by showing that all p-colorings of Tm,n are equivalent to
the main p-coloring.

4.1 A main p-coloring for every torus knot

Given a torus knot Tm,n, consider two p-colorings α, β ∈ Gp(Tm,n). Let αj
i and

βj
i be the colors of the ith strand of any braid knot K after j cycles for the
p-colorings α and β, respectively. Note that the p-colorings α and β are in the
same coloring class in C(Tm,n) if and only if

αj
i = αk

l ⇐⇒ βj
i = βk

l (2)

for all i, l ∈ {0, 1, . . . , n− 1} and j, k ∈ {0, 1, . . . ,m}.
Given a p-colored braid representation of a knot Tm,n, we will say that the

jth color array of Tm,n is the element of (Zp)
n whose ith component is the color

of the ith strand of the braid representation of Tm,n after j cycles. For a knot
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Figure 2: The action of φ on the jth color array of Tm,n.

Tm,n to be p-colorable it is a necessary and sufficient condition that the initial
color array of its braid representation be exactly the same as its final color array.

Let (c0, c1, · · · , cn−1) be the jth color array for the braid representation of
some knot Tm,n, and consider the map φ : (Zp)

n → (Zp)
n defined by

φ(c0, c1, · · · , cn−1) = (2c0 − c1, 2c0 − c2, · · · , 2c0 − cn−1, c0). (3)

Notice that φ is the map that, given the jth color array of a knot Tm,n, returns
the (j+1)st color array according the rules of p-colorability, as seen in Figure 2.
Define the map φj to be the composition of j copies of φ, or in other words:

φj( initial color array of Tm,n) = jth color array of Tm,n.

A p-coloring of any knot Tm,n is entirely determined by its initial color
array in a braid representation for Tm,n. Furthermore, for a knot Tm,n to be
p-colorable, it is a necessary and sufficient condition that we have φm = id when
applied to the initial color array of the braid representation.

We now consider a second n-tuple that can be defined from the braid repre-
sentation of a p-colored knot Tm,n. The color variance between any two adjacent
strands in the projection colored with ci and cj respectively is cj − ci mod p.
(We consider the far left and far right strands to be adjacent.) Given a p-colored
braid representation of a knot Tm,n, the jth variance vector of Tm,n is the ele-
ment of (Zp)

n whose ith component is the color variance between the (i− 1)th

and ith strands after j cycles. The 0th variance vector of Tm,n is referred to
as the initial variance vector. A constant variance vector is a variance vector
V = (v0, v1, · · · , vn−1) where v0 = v1 = · · · = vn−1. If (c0, c1, · · · , cn−2, cn−1) is
the jth color array for some knot Tm,n, then the jth variance vector for Tm,n is

(v0, v1, · · · , vn−2, vn−1) = (c1 − c0, c2 − c1, · · · , cn−1 − cn−2, c0 − cn−1). (4)

Let ψ : (Zp)
n → (Zp)

n denote the map that takes as input the jth variance
vector of a knot Tm,n and returns the (j+1)st variance vector. By Equations (3)
and (4) we have:

ψ(v0, v1, · · · , vn−2, vn−1) = ((2c0 − c2) − (2c0 − c1), (2c0 − c3) − (2c0 − c2),

· · · , c0 − (2c0 − cn−1), (2c0 − c1) − c0

= (c1 − c2, c2 − c3, · · · , cn−1 − c0, c0 − c1)

= (−v1,−v2, · · · ,−vn−1,−v0).
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Figure 3: The action of ψ on the jth variance vector of Tm,n.

Figure 3 shows how Equation (5) looks as we move from the jth to the (j+1)th

variance vector. In this figure, the color variance vi between the (i − 1)st and
ith strands is shown between those two strands.

We define ψj : (Zp)
n → (Zp)

n to be the composition of j copies of ψ. Since
for every application of ψ to (v0, v1, · · · , vn−1), all entries get multiplied by −1
and move over one position to the left while wrapping around, we have that
ψj(v0, v1, · · · , vn−1) acts such that for all i ∈ {0, 1, · · · , n− 1}

vi −→ (−1)jvi+j modn. (5)

In a more general form this means that

ψj(v0, v1, · · · , vn−1) =

{

(vj , vj+1, · · · , v0, v1, · · · , vj−1), if j is even
(−vj ,−vj+1, · · · ,−v0,−v1, · · · ,−vj−1), if j is odd,

where all subscripts are taken modulo n.
Given a p-colorable torus knot Tm,n, we can assume without loss of generality

that m is even and n is odd. We will now exhibit a specific p-coloring of Tm,n for
every prime p that divides n, called the main p-coloring of Tm,n. Since p divides
n there exists r ∈ Z

+ such that n = rp. Consider the braid representation of
Tm,n with n strands and m cycles whose initial, or 0th, color array M is the
n-tuple whose entries are the series 0, 1, · · · , p− 2, p− 1, repeated r times:

M = (0, 1, · · · , p− 2, p− 1, 0, 1, · · · , p− 1, · · · , p− 2, p− 1). (6)

Using Equation (3) we can deduce that the 1st color array of Tm,n is

φ(M) = φ(0, 1, · · · , p− 2, p− 1, 0, 1, · · · , p− 1, · · · , p− 2, p− 1)

= (2(0) − 1, 2(0)− 2, · · · , 2(0) − (p− 1), 2(0) − 0,

2(0) − 1, 2(0)− 2, · · · , 2(0) − 0, · · · , 2(0) − (p− 1), 0)

= (−1,−2, · · · ,−(p− 1), 0,−1,−2, · · · , 0, · · · ,−(p− 1), 0)

= (p− 1, p− 2, · · · , 1, 0, p− 1, p− 2, · · · , 0, · · · , 1, 0).
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Note that the 2nd color array of Tm,n is

φ2(M)

= φ(φ(M))

= φ(p− 1, p− 2, · · · , 1, 0, p− 1, p− 2, · · · , 0, · · · , 1, 0)

= (2(p− 1) − (p− 2), 2(p− 1) − (p− 3), · · · , 2(p− 1) − 0,

2(p− 1) − (p− 1), 2(p− 1) − (p− 2), 2(p− 1) − (p− 3), · · · ,

2(p− 1) − (p− 1), · · · , 2(p− 1) − 0, (p− 1))

= (p, p+ 1, · · · , 2p− 2, 2p− 1, p, p+ 1, · · · , 2p− 1, · · · , 2p− 2, p− 1)

= (0, 1, · · · , p− 2, p− 1, 0, 1, · · · , p− 1, · · · , p− 2, p− 1)

= M.

4.2 Every p-coloring of a torus knot is equivalent to the

main p-coloring

To prove Theorem 2 it suffices to show that if Tm,n is p-colorable, then every
p-coloring of Tm,n is equivalent to the main p-coloring of Tm,n. Notice that
the initial variance vector for the main p-coloring of a knot Tm,n as defined
in Equation (6) is the constant variance vector (1, 1, · · · , 1). Our first step in
proving Theorem 2 will be to prove the following lemma.

Lemma 2. Suppose Tm,n is a p-colorable torus knot where p is prime, and
consider the n-strand braid representation of Tm,n. If the initial color array
of the p-coloring has a constant variance vector, then that initial color array
induces a p-coloring that is equivalent to the main p-coloring of Tm,n.

Proof. Let C be an initial color array of Tm,n with constant variance vector
(v, v, . . . , v). The for some a ∈ Zp we can write C as

C = (a+ 0v, a+ v, · · · , a+ (n− 2)v, a+ (n− 1)v). (7)

The first color array of Tm,n with this p-coloring is

φ(C) = φ(a, a+ v, · · · , a+ (n− 2)v, a+ (n− 1)v)

= (2a− (a+ v), 2a− (a+ 2v), · · · , 2a− (a+ (n− 1)v), a)

= (a− v, a− 2v, · · · , a− (n− 1)v, a)

= (a+ (n− 1)v, a+ (n− 2)v, · · · , a+ v, a). (8)

Notice that φ reverses the order of the entries in C. Applying φ again, we see
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that the second color array is

φ2(C)

= φ(a− v, a− 2v, · · · , a− (n− 1)v, a)

= (2(a− v) − (a− 2v), 2(a− v) − (a− 3v), · · · , 2(a− v) − a, a− v)

= (a, a+ v, · · · , a+ (n− 3)v, a− 2v, a− v)notag (9)

= (a, a+ v, · · · , a+ (n− 3)v, a+ (n− 2)v, a+ (n− 1)v)

= C. (10)

Thus we can see that φ2 = id when applied to color arrays with constant
variance.

Since p is prime, there exists t ∈ Zp such that a = tv mod p. Thus, C =
(tv, tv+v, tv+2v, · · · , tv+(n−1)v) = (tv, (t+1)v, (t+2)v, · · · , (t+(n−1))v). We
know if v ∈ Zp/{0} and p is prime, then 〈v〉 = Zp. Therefore the first p entries
of C are distinct elements of Zp. Moreover, since p divides n, C is comprised of
this exact pattern of all of Zp repeated precisely n

p
times. Therefore,

C = (c0, c1, · · · , cp−2, cp−1, c0, c1, · · · , cp−1, · · · , cp−2, cp−1) (11)

where c0, c1, · · · , cp−1 repeats n
p

times. Since c0, c1, · · · , cp−1 are distinct, we

know that for i ∈ {0, 1, · · · , p− 1} we have

ci = cj ⇐⇒ i = j. (12)

Using the notation in Equation (12), and the results in Equations (8) and (10),
we see that the jth color array for the p-coloring induced by the initial color
array C is

φj(C) =

{

(c0, c1, · · · , cp−2, cp−1, c0, c1, · · · , cp−1, · · · , cp−2, cp−1), if j is even
(cp−1, cp−2, · · · , c1, c0, cp−1, cp−2, · · · , c0, · · · , c1, c0), if j is odd.

On the other hand, from Section 4.1 we know that the jth color array for
the main p-coloring induced by the initial color array M from Equation (6) is

φj(M) =

{

(0, 1, · · · , p− 2, p− 1, 0, 1, · · · , p− 1, · · · , p− 2, p− 1), if j is even
(p− 1, p− 2, · · · , 1, 0, p− 1, p− 2, · · · , 0, · · · , 1, 0), if j is odd.

We wish to prove that C and M induce equivalent p-colorings in terms of
the condition in Equation (2). Let πi : (Zp)

n → (Zp) be the ith projection map,

and let φj
i = πi◦φ

j : (Zp)
n → (Zp). Notice that φj

i takes in an initial color array
and returns the color of the ith strand of the jth color array of the induced p-
coloring. From the expression for φj(C) above, we see that for j ∈ {0, 1, · · · ,m}
and i ∈ {0, 1, · · · , n− 1} we have

φj
i (C) =

{

ci mod p, if j is even
cp−1−i mod p, if j is odd.

(13)
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Similarly, from the expression for φj(M) above, we see that

φj
i (M) =

{

i mod p, if j is even
p− 1 − i mod p, if j is odd.

(14)

It is now easy to see from Equations (12), (13), and (14) that we have

φj
i (M) = φk

l (M) ⇐⇒ φj
i (C) = φk

l (C)

for j, k ∈ {0, 1, · · · ,m} and i, l ∈ {0, 1, · · · , n − 1}. Therefore by Equation (2)
we know that C and M induce equivalent p-colorings on Tm,n.

We will now use Lemma 2 to prove Theorem 2. The key will be to show
that there cannot be a p-coloring of Tm,n that does not have a constant variance
vector.

Proof. Suppose Tm,n is a p-colorable torus knot, and consider the n-strand braid
representation of Tm,n. By Theorem 1 we can assume without loss of generality
that n is odd and m is even, and that p divides n. Seeking a contradiction,
assume that |Cp(Tm,n)| > 1. Specifically, assume there is a p-coloring γ ∈
Gp(Tm,n) that is fundamentally different from the main p-coloring of Tm,n.
Let G = (g0, g1, · · · , gn−2, gn−1) be the initial color array for γ, and let V =
(v0, v1, · · · , vn−2, vn−1) = (g1 − g0, g2 − g1, · · · , gn−1 − gn−2, g0 − gn−1) be the
initial variance vector for γ.

Using ψ as defined in Equation (5) we can apply ψq to V to get the qth

variance vector of γ (where all subscripts are taken mod n):

ψq(V ) =

{

(vq, vq+1, · · · , v0, v1, · · · , vq−1), if q is even
(−vq,−vq+1, · · · ,−v0,−v1, · · · ,−vq−1), if q is odd.

Let r be the smallest positive integer for which V partitions into s repeating
sections of length r. Note that 1 ≤ r ≤ n and that n = rs. Since by hypothesis
γ is not equivalent to the main p-coloring of Tm,n, Lemma 2 tells us that the
variance vector V is not constant. Therefore we have r > 1.

Since m is even, we know from Equation (3) that

φm(V ) = (vm, vm+1, · · · , v0, v1, · · · , vm−1).

In other words, φm turns the initial variance vector V into the vector where all
entries have been shifted to the left m positions and wrapped around. Because
m is the number of cycles in our braid representation, and γ is a p-coloring of
Tm,n, we must have ψm(V ) = V . In order for this to occur, ψm must shift V
over by some multiple of r, the length of a repeating section. Therefore we must
have m = kr for some k ∈ Z

+.
We have now shown that n = rs, m = kr, and r > 1; these facts imply that

gcd (m,n) ≥ r > 1. But this contradicts our assumption that Tm,n is a knot and
not a link. Therefore, there cannot exist a p-coloring γ that is fundamentally
different from the main coloring, and hence we must have |Cp(Tm,n)| = 1.
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Because the main p-coloring of a torus knot Tm,n uses all p colors, and every
p-coloring that is equivalent to the main coloring must also use all p colors, we
have the following immediate corollary to Theorem 2.

Corollary 3. Every p-coloring of a braid projection of knot Tm,n must use all
p colors.

5 Questions for future research

1. What is the significance of the color distribution in Corollary 3 and what
other knots have a similar color distribution?

2. Do variance vectors have useful applications to other types of knots, es-
pecially those whose braid word is some power of a base word?

3. What other types of p-colorable knots have only one p-coloring class?
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