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ABSTRACT

We show that the number of fundamentally different m-colorings of a knot K depends
only on the m-nullity of K, and develop a formula for the number of such colorings.

We also determine the m-colorability and m-nullity of any (p, q, r) pretzel knot, and
therefore determine the number of fundamentally different m-colorings for any (p, q, r)

pretzel knot.

1. Introduction

Tricolorability is a rather coarse knot invariant (it only divides the category of knots
into two types), but it has many useful applications; for example, tricolorability can
be used to determine whether a link is non-splittable [1]. The set of integers m for
which a knot is m-colorable (the “coloring number set”) is a more powerful invariant
(see Section 4.6 of [2]). Although m-colorability is defined for any integer m > 2,
in this paper we will focus only on the cases where m is prime.

In Section 2 we give a quick overview of colorability of knots, and discuss the
number of ways that a knot can be m-colored. The number of different m-colorings
is a finer invariant than the m-colorability of a knot, and is used in [3] to distinguish
knots with identical HOMFLYPT polynomials. In Section 3 we introduce the notion
of “fundamentally different” colorings, that is, m-colorings that differ by more than
just permutations of the colors, and develop a formula for the number of such
colorings based only on the m-nullity of the knot.
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In Section 4 we focus our attention on pretzel knots. In particular, we will show
that the determinant of a (p, q, r) pretzel knot is ∆ = pq + qr + pr, and thus that
a (p, q, r) pretzel knot is m-colorable only if m divides ∆. A simpler version of this
fact was proved in [4] (without the use of determinants), where it is shown that
a (p, q, r) pretzel knot fails to be m-colorable for any m if ∆ = 1. We will then
determine the m-nullity of a (p, q, r) pretzel knot, and use the results from Section 3
to describe the number of fundamentally different m-colorings that a (p, q, r) pretzel
knot admits. Specifically, we show that for any (p, q, r) pretzel knot K, if m divides
∆, then the m-nullity of K is either 2 or 3, depending on whether or not any of p,
q, and r are relatively prime to m. This will mean that every m-colorable (p, q, r)
pretzel knot must have either one or four fundamental m-colorings.

2. Definitions and Background

We begin by presenting some basic definitions and results concerning colorability of
knots. (See also [4] and [5].)

2.1. Colorability

Definition 1. A knot K is m-colorable if each strand in a projection of K can be
assigned a number (called a “color”) from the set {0, 1, · · · ,m − 1} so that (i) at
least two colors are used, and (ii) at each crossing, if x and y are the colors of the
understrands and z is the color of the overstrand, then x + y − 2z ≡ 0 modm.

In the case where m = 3, condition (i) is equivalent to requiring that the three
strands meeting at each crossing are all the same color, or all different colors. In
a general m-coloring, the conditions x + y − 2z ≡ 0 modm are more restrictive;
having three strands all the same or all different at each crossing is not enough to
guarantee that x+ y− 2z ≡ 0 modm. Throughout this paper, the only m-colorings
we will consider are those where m is prime. Note that m-colorability is invariant
under the Reidemeister moves, and therefore independent of the projection used.

Given a knot projection with a labeling of its crossings and strands, the as-
sociated crossing matrix C is the matrix whose (i, j) entry is 1 if strand j is an
understrand at crossing i, and −2 if strand j is an overstrand at crossing i. A
matrix obtained by removing one row and one column from a crossing matrix will
be called a minor crossing matrix. Every minor crossing matrix of a knot K has the
same determinant, which we denote det(K). The system of equations represented
by the minor crossing matrix of a knot K has a solution mod m if and only if
det(K) ≡ 0 modm. Therefore:
Theorem 1. Suppose m is prime. A knot K is m-colorable if and only if m divides
det(K).

Each vector in the mod m nullspace of the crossing matrix C corresponds to an
m-coloring of K. The m-nullity of a knot K is the dimension of the nullspace of
the crossing matrix of K. (Note: Some authors use the mod m nullity of the minor
crossing matrix rather than the mod m nullity of the full crossing matrix.) We can
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see immediately that if a knot has m-nullity 1, it is not m-colorable, because in
this case, the only m-colorings are the trivial colorings, that is, those represented
by multiples of the vector (1, 1, . . . , 1, 1).

2.2. Counting m-colorings

The m-nullity of a knot K determines the number of m-colorings of K, regardless of
projection or number of strands. Suppose K is a knot with m-nullity n > 2. Then
the system of equations describing the m-colorability conditions at each crossing of
K will have n free variables. This means that there is a set of n strands of K that
can be assigned any color in 0, 1, 2, ...,m− 1 (as long as they are not all assigned
the same color). We call this a set of significant strands for that projection of K.
The colors for the remaining strands of the projection will be determined by the
colors of the significant strands. Theorem 2 describes a formula for the number of
m-colorings of a knot with m-nullity n. (This formula is presented without proof
in [6].)

Theorem 2. A knot with m-nullity n has mn −m different m-colorings.

Proof. Let K be a knot with m-nullity n. This implies that K has n significant
strands. Because each strand can be assigned any of m different colors, there
exist mn different ways to assign colors to the strands such that the condition
x + y − 2z ≡ 0 modm is satisfied. However, this number includes all the trivial
m-colorings, that is, the m-colorings in which the entire knot is colored with only
one color. Because an m-coloring must use at least two colors, we subtract the m

trivial colorings, leaving us with mn −m different m-colorings.

Example 1. For example, the trefoil knot has 3-nullity 2, and thus 32 − 3 = 6 dif-
ferent 3-colorings. In this example, any two strands can be chosen as the significant
strands. The six 3-colorings in Figure 1 correspond to the six different ways that we
can assign colors from {0, 1, 2} to the two significant strands (without both strands
being the same color).

Figure 1: The six 3-colorings of the trefoil knot.
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3. Fundamentally Different Colorings

We will now examine whether a knot can be colored in two or more ways that are
not simply permutations of each other.

3.1. Counting fundamentally different m-colorings

The different 3-colorings of the trefoil knot in Figure 1 are all permutations of each
other, and thus we say that the trefoil has only one fundamental 3-coloring. Some
knots have more than one fundamentally different m-coloring.
Example 2. The 935 knot has exactly four fundamentally different 3-colorings (this
will be guaranteed by Theorem 1). Representatives of these four fundamentally
different 3-colorings are shown in Figure 2.

Figure 2: Four fundamentally different 3-colorings of the 935 knot.

To find the number of fundamentally different m-colorings of a knot, we will
separate the possible m-colorings into “types,” and then count how many funda-
mentally different colorings are possible of each “type.” A knot with m-nullity n will
have n significant strands that can each be colored with any number 0, 1, 2, . . . ,m−1
(as long as at least two colors are used). A choice of these m-colorings corresponds
to a coloring vector (c1, c2, . . . , cn). For example, a knot with 5-nullity 4 could have
coloring vectors (0, 2, 1, 4), (1, 1, 1, 4), or (3, 3, 0, 3). We will say that two coloring
vectors (for m-nullity n) are of the same type if they are the same up to permuta-
tions of the order and choice of colors. For example, (1, 1, 1, 4) and (3, 3, 0, 3) are of
the same type, but (0, 2, 1, 4) and (1, 1, 1, 4) are not.

We can classify a type of coloring vector using a type vector ~d = 〈d1, d2, . . . , dn〉
that records the sizes of the sets of strands that are similarly colored. Each di in
the type vector describes a number of strands that are assigned the same color. For
example, the coloring vector (3, 3, 0, 3) is made up of a set of 3 strands of the same
color (3), and a set of 1 strand of a different color (0). Therefore we say (3, 3, 0, 3)
is of type 〈3, 1, 0, 0〉. (We append zeroes so that the type vector has length n = 4.)
Definition 2. Suppose K is a knot with m-nullity n. A type vector for K is a
vector ~d = 〈d1, d2, . . . , dn〉 in Zn

+ satisfying the following three conditions:
(i) di+1 ≤ di < n for 1 ≤ i ≤ n− 1;
(ii)

∑n
k=1 di = n;

(iii) At least n−m of the di are zero.
The set of all type vectors for m-nullity n is denoted Dn,m.
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Part (i) of Definition 2 ensures that the entries di are decreasing (to avoid
repetition), and omits the type of m-coloring where all n of the significant strands
are assigned the same color (or the trivial coloring). We require that the entries
di add to n in part (ii) since the sum of the di will be the number of significant
strands. Part (iii) is only relevant if n > m. The number of non-zero entries in ~d

represents the number of colors that are used. An m-coloring can use at most m

colors, so if n > m then at least m− n of the di must be zero.
Our formula for the number of m-colorings of a knot with m-nullity n will also

require the following definition.

Definition 3. The k-count of a type vector ~d = 〈d1, d2, . . . , dn〉, denoted sk(~d), is
the number of entries of ~d which are equal to k: for 0 ≤ k < n,

sk(~d) :=
∣∣{di | di = k, 1 ≤ i ≤ n}

∣∣ .

Note that we will never need to consider sn(~d), because any coloring whose type
has sn(~d) 6= 0 will be the trivial coloring. In this notation, part (iii) of Definition 2
says that s0 ≤ m−n. A few examples: The type vector 〈2, 1, 0〉 has s0 = 1, s1 = 1,
and s2 = 1. The type vector 〈1, 1, 1〉 has s0 = 0, s1 = 3, and s2 = 0. A type vector
with s1 = n corresponds to m-colorings where all the significant strands are colored
differently.

We are finally in a position to describe our first main result, a formula for the
number of fundamentally different m-colorings of a knot with m-nullity n. Note
that every knot with m-nullity n will have the same list of type vectors, with the
same k-counts. Therefore the formula in Main Theorem 1 depends only on the
prime number m and the m-nullity n of the knot. The proof of Main Theorem 1 is
left until Section 3.2.

Main Theorem 1. Suppose K is a knot with m-nullity n. Then K has C(m,n)
fundamentally different m-colorings, given by the formula:

C(m,n) =
∑

~d∈Dn,m

n!
(d1! d2! · · · dn!) (s1! s2! · · · sn!)

Example 3. If a knot K has 5-nullity 4, then Dn,m consists of four type vectors:
〈3, 1, 0, 0〉, 〈2, 2, 0, 0〉, 〈2, 1, 1, 0〉, and 〈1, 1, 1, 1〉. If we use these vectors (and the
corresponding k-counts) in the formula in Main Theorem 1, we obtain the sum:

4!
(3! 1! 0! 0!)(1! 0! 1!) + 4!

(2! 2! 0! 0!)(0! 2! 0!) + 4!
(2! 1! 1! 0!)(2! 1! 0!) + 4!

(1! 1! 1! 1!)(4! 0! 0!) = 14.

Since the sum is equal to 14, there exist 14 fundamentally different 5-colorings of a
knot with 5-nullity 4. One knot with 5-nullity 4 is the composition of three Figure-8
(or 41) knots, shown in Figure 3. Using the four boldly marked strands as the set of
significant strands, the 41#41#41 knot can be colored 14 fundamentally different
ways.
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Figure 3: The 41#41#41 knot has 14 fundamentally different 5-colorings.

In fact, as long as m ≥ 4, any knot with m-nullity 4 will have 14 fundamen-
tally different m-colorings. Table 1 lists the number of fundamentally different
m-colorings of any knot with m-nullity n (provided that m ≥ n). If m < n, then
there are more significant strands than colors, which affects the number of possible
m-colorings (see Table 2).

fundamental
m-nullity colorings

1 0
2 1
3 4
4 14
5 51
6 202

Table 1: The number of fundamen-
tally different m-colorings for a given
m-nullity n (the table holds for any
m provided m ≥ n).

fundamental
3-nullity colorings

1 0
2 1
3 4
4 13
5 40
6 121

Table 2: The number of fundamen-
tally different 3-colorings for a 3-
nullity n knot (note the tables differ
only when m < n).

3.2. Proof of Main Theorem 1

Proof. Suppose K is a knot with m-nullity n. Then K has n significant strands,
which we can label with (not necessarily distinct) colors a1, a2, . . . , an. It is unim-
portant what specific color each strand is assigned; what matters is how many
different ways we can assign colors to the strands so that a given type vector is
satisfied. Before developing the general formula, we will focus on a few specific
examples.

For example, the type vector 〈3, 2, 1, 0, 0, 0〉 for a set of six significant strands
represents a color assignment where three strands are one color, two more strands
are another color, and the remaining strand is a third color. We will now count
the number of arrangements of the strands ai that satisfy this type vector. We
must first choose three out of the six strands to be assigned the first color; there
are

(
3
6

)
= 20 ways to do this. Similarly, there are

(
3
2

)
= 3 ways to choose two

strands (from the remaining three) to be the second color. Finally, there is only one
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strand left to be assigned the remaining color (
(
1
1

)
= 1 choices). Therefore, there

are 20 · 3 · 1 = 60 strand arrangements satisfying the type vector. For example, two
of these 60 arrangements are:

(a1 = a2 = a3) 6= (a4 = a5) 6= (a6),

(a1 = a4 = a5) 6= (a2 = a6) 6= (a3).

The counting method used above will overcount the number of arrangements if
there are two or more equal entries in the type vector. For example, consider the
type vector 〈2, 2, 1, 0, 0〉 for a set of five significant strands, and the following two
arrangements:

(a1 = a3) 6= (a2 = a5) 6= (a4);

(a2 = a5) 6= (a1 = a3) 6= (a4).

The counting method predicts that there will be
(
5
2

)(
3
2

)(
1
1

)
= 30 different arrange-

ments for this type vector. However, this counts the two arrangements above dif-
ferently, although they are obviously the same. Since there are two sets of the same
size in the arrangements for this type vector, we must divide our result by 2; there-
fore there will be 15 different arrangements for the type vector 〈2, 2, 1, 0, 0〉. If there
are three sets of the same size, we must divide by 3 ·2; if there are s sets of the same
size, we must divide by s!. We must divide for every multiple set, so if we had type
vector 〈2, 2, 1, 1, 1, 0, 0〉, we would have to divide our result by 2! · 3!. Notice that
the k-counts from Definition 3 are exactly what we need to measure how many sets
of the same size occur in any type vector.

Applying this counting method to a general type vector ~d = 〈d1, d2, . . . , dn〉, we
see that there are at most(

n

d1

)(
n− d1

d2

)(
n− d1 − d2

d3

)
· · ·

(
n− d1 − d2 − · · · − dn−1

dn

)
(3.1)

different arrangements. The expression in (3.1) may overcount the number of ar-
rangements, depending on the k-counts sk(~d). To make an accurate count of the
arrangements, we must divide the expression in (3.1) by the product of the factorials
of the k-counts sk = sk(~d):

1
s1! s2! s3! · · · sn−1!

(Note that if si(~d) = 1, then we divide by 1!, which does not change the expresssion.)
To find the total possible number C(n, m) of fundamentally different m-colorings,

we must add together the number of arrangements corresponding to each type vec-
tor. This process results in the following formula:

C(n, m) =
∑

~d∈Dn,m

( ∏
1≤i≤n, di 6=0

(
n−

∑i
j=1 dj−1

di

)
·

∏
1≤k<n

1
sk!

)
. (3.2)
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It now only remains to simplify the equation in (3.2) and show it is equivlant
to the formula in Main Theorem 1. We begin by considering the part of (3.2) that
comes from expression 3.1. It is easy to show that:

∏
1≤i≤n di 6=0

(
n−

∑i
j=1 dj−1

di

)
=

n!
(d1!d2! · · · dn!)(n− d1 − d2 − · · · − dn)!

.

Since
∑n

k=1 di = n, the second factor in the denominator of the expression above is
(n− n)! = 0! = 1. Thus we have:

∏
1≤i≤n di 6=0

(
n−

∑i
j=1 dj−1

di

)
=

n!
d1!d2!d3! · · · dn!

.

Therefore, the equation in (3.2) can be written as:

C(n, m) =
∑

~d∈Dn,m

n!
(d1!d2!d3! · · · dn!)(s1!s2!s3! · · · sn)

.

Given a type vector ~d, the corresponding term in the sum from Main Theorem 1
counts the number of possible strand arrangements that satisfy the type vector
~d. To count the total number of m-colorings, including those that differ only by
permutations, we must multiply each of the terms in the sum from Main Theorem 1
by m!

(m−(n−s0))!
, where s0 = s0(~d) is the 0-count for the type vector ~d. This means

that the total number of m-colorings of a knot with m-nullity n is given by the
expression: ∑

~d∈Dn,m

(
m!

(m− (n− s0))!
· n!

(d1!d2!d3! · · · dn!)(s1!s2!s3! · · · sn)

)
. (3.3)

It is interesting to note that this complicated expression is in fact equal to mn−m,
the formula from Theorem 2.

4. Pretzel Knots

The remainder of this paper will be dedicated to applying our m-colorability results,
including the formula from Main Theorem 1, to pretzel knots.

4.1. Basic properties of pretzel knots

A twist is a part of a knot comprised of two strands twisted together one or more
times (see Figure 4). The top right strand is called the northeast strand, the bottom
right is called the southeast strand, and so on. A twist is positive if its northeast
strand is an overstrand; otherwise it is negative. An twist is odd if it has an odd
number of crossings; otherwise it is even.

A pretzel knot is a knot composed of three twists joined together such that each
northeast strand connects to the adjacent northwest strand, and each southeast
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Figure 4: Four twists: a positive even twist, a positive odd twist, a negative odd
twist, and a negative even twist, respectively.

strand connects to the adjacent southwest strand (we consider the first and last
twists to be adjacent). In this paper we will focus solely on three-twist pretzel
knots. We name a pretzel knot based on the number of crossings in each twist. For
example, the three twists in Figure 5 have 5, 4, and 7 crossings respectively, and
each twist is positive, so the knot is named (5, 4, 7).

Figure 5: A (5, 4, 7) pretzel knot.

The following three theorems describe basic properties of pretzel knots. Their
proofs are elementary and we do not include them here. The results in this paper
apply to both pretzel knots and pretzel links (as described in Theorem 3), and from
this point forward we will refer to both pretzel knots and pretzel links simply as
pretzel knots. Theorems 4 and 5 show that, for example, the (5, 4, 7), (4, 7, 5), and
(−7,−4,−5) pretzel knots all represent the same knot. In addition, these theorems
show that to prove a theorem for all (p, q, r) pretzel knots, it suffices to prove two
special cases: the case where p, q, and r are all positive, and the case where exactly
one of p, q, and r is negative.
Theorem 3. A (p, q, r) pretzel is a knot if at most one twist is even, a 2-component
link if two twists are even, and a 3-component link if all twists are even.
Theorem 4. Permuting the twists in a (p, q, r) pretzel knot changes the projection
but does not change the knot.
Theorem 5. Suppose p, q, and r are integers. Then the (p, q, r) pretzel knot and
the (−p,−q,−r) pretzel knot are different projections of the same knot.
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4.2. Labelings and crossing matrices

If K is a (p, q, r) pretzel knot where p, q, and r are all positive integers, then we
will label the crossings of K as shown in Figure 6, and the strands of K as shown
in Figure 7.

Figure 6: Crossing labeling for
a positive-twist pretzel knot.

Figure 7: Strand labeling for
a positive-twist pretzel knot.

Using the projection and labeling in Figures 6 and 7, the general crossing matrix
for a pretzel knot where all three twists are positive is shown in Figure 8. Each
unlabeled entry in the matrix is a 0, which have been removed for ease in reading.
Note that the crossing matrix, and all of its diagonal blocks, are square.

1
2
...
p− 1
p
p + 1
p + 2
...
p + q − 1
p + q
p + q + 1
p + q + 2
...
p + q + r − 1
p + q + r



−2 1 1
1 −2 1

. . .
1 −2 1

1 −2 1
1 −2 1

1 −2 1
. . .
1 −2 1

1 −2 1
1 −2 1

1 −2 1
. . .
1 −2 1

1 1 −2



Figure 8: General crossing matrix of a (p, q, r) pretzel knot when p, q, and r are all
positive.

If any of the twists in a pretzel knot are negative, we will require a different
labeling. We choose this labeling so that the connecting strands are labeled the
same way as in the all-positive pretzel labeling in Figures 6 and 7. For example,
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a (p, q,−r) pretzel knot (where p, q, and r are positive) is labeled as in Figures 9
and 10, and has the general crossing matrix as shown in Figure 11.

Figure 9: Crossing labeling for
a(p, q,−r) pretzel knot.

Figure 10: Strand labeling
for a (p, q,−r) pretzel knot.

1
2
3
...
p− 2
p− 1
p
p + 1
p + 2
p + 3
...
p + q − 2
p + q − 1
p + q
p + q + 1
p + q + 2
p + q + 3
...
p + q + r − 2
p + q + r − 1
p + q + r



−2 1 1
1 −2 1

1 −2 1
. . .
1 −2 1

1 −2 1
1 −2 1

1 −2 1
1 −2 1

1 −2 1
. . .
1 −2 1

1 −2 1
1 −2 1

−2 1 1
1 −2 1

1 −2 1
. . .

1 −2 1
1 1 −2
−2 1 1



Figure 11: General crossing matrix of a (p, q,−r) pretzel knot.

4.3. m-colorability of pretzel knots

In this section we will use the determinant to determine the m-colorability of a
general pretzel knot.

Theorem 6. Suppose p, q, and r are any integers. A (p, q, r) pretzel knot is m-
colorable if and only if m divides pq + pr + qr.
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The proof of Theorem 6 involves using row operations to write the general minor
crossing matrix of a pretzel knot as an upper-triangular matrix so that we can easily
find the determinant.
Proof. It suffices to prove Theorem 6 in two cases: when all three twists are positive,
and when two twists are positive and one is negative (see Theorems 4 and 5). We
will show that in these two cases, the determinant of a (p, q, r) pretzel knot is
∆ = pq + pr + qr. By Theorem 1, this implies that the knot will be m-colorable if
and only if m divides ∆.

Case 1. Let p, q, and r be positive integers, and let K be a (p, q, r) pretzel knot
with labelings as in Figures 6 and 7 and crosing matrix C as in Figure 8. To find
det(K) we will reduce the matrix C so that only zeroes appear below the lower
diagonal (we will choose the minor of C obtained by removing the first row and last
column, but will not remove this row and column until the end of the proof).

We begin with the following sequences of row operations:

Rp+1 −→ Rp+1 −
∑p

i=2(i− 1)Ri.

Rp+q+1 −→ Rp+q+1 −
∑p+q

i=p+2(i− 1)Ri.

The row operations above change the matrix C into the matrix shown in Figure 12.

1
2
...

p− 1
p

p + 1
p + 2

...
p + q − 1

p + q
p + q + 1
p + q + 2

...
p + q + r − 1

p + q + r



−2 1 1
1 −2 1

. . .
1 −2 1

1 −2 1
p −2 1 · · · · · · −(p− 1)

1 −2 1
. . .
1 −2 1

1 −2 1
q −2 1 · · · · · · −(q − 1)

1 −2 1
. . .
1 −2 1

1 1 −2



Figure 12: Partially reduced crossing matrix of a (p, q, r) pretzel knot.

The final row that must be reduced is Rp+q+r. We begin by switching this row with
row Rp+1 (because there is a p above the 1 in column Cp):

Rp+q+r ←→ Rp+1.

Note that switching these rows will change the sign of the determimnant. The new
row Rp+q+r can be partially reduced with the sequence of row operations:

Rp+q+r −→ Rp+q+r −
p+q∑

i=p+1

(i− 1)Ri.

At this point, the last r + 1 rows of the matrix are as shown in Figure 13.
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p + q
p + q + 1
p + q + 2

...
p + q + r − 1

p + q + r



1 −2 1
q −2 1 · · · · · · −(q − 1)

1 −2 1
. . .
1 −2 1

−p −2 1 · · · −p 1 + 2p



Figure 13: Final r + 1 rows of the partially reduced crossing matrix of a (p, q, r)
pretzel knot.

Since we now have a q and a −p in the same column, we will have to use some
creative operations to continue reducing:

Rp+q+1 −→ Rp+q+1 + Rp+q+r,
Rp+q+r −→ q ·Rp+q+r,
Rp+q+r −→ Rp+q+r + p ·Rp+q+1.

Note that multiplying by q will change the determinant by a factor of q. The final
row is now:(

0 · · · 0 0 · · · 0 −2(q + p) p + q 0 · · · 0 −pq p + q + pq
)
.

The remainder of the row reduces fairly easily using the following sequence of row
operations:

Rp+q+r −→ Rp+q+r +
p+q+r−1∑
i=p+q+2

(i− p− q)(q + p)Ri.

We have now reduced the crossing matrix C to the reduced matrix R shown in
Figure 14.

1
2
...

p− 1
p

p + 1
p + 2

...
p + q − 1

p + q
p + q + 1
p + q + 2

...
p + q + r − 1

p + q + r



−2 1 1
1 −2 1

. . .
1 −2 1

1 −2 1
1 1 −2

1 −2 1
. . .
1 −2 1

1 −2 1
q −2 1 · · · · · · −(q − 1)

1 −2 1
. . .
1 −2 1

∆ ∆



Figure 14: Reduced crossing matrix R where ∆ = pq + pr + qr

The minor of R obtained by removing the first row and last column is an upper-
triangular matrix with determinant −q · ∆. Therefore, the minor crossing matrix
of K has determinant ∆ = pq + pr + qr (since our row operations changed the
determinant by a factor of q and switched the sign).
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Case 2: Suppose p, q, and r are positive integers, and K is a (p, q,−r) is a
pretzel knot, with labelings as in Figures 9 and 10 and crossing matrix D as in
Figure 11. The initial row operations for reducing crossing matrix D are similar to
the row operations for reducing crossing matrix C in Case 1, and are as follows:

Rp+1 −→ Rp+1 −
∑p

i=2(i− 1)Ri,
Rp+q+1 ←→ Rp+q+2,
Rp+q+2 −→ Rp+q+2 + 2 ·Rp+q+1,

Rp+q+1 −→ Rp+q+1 −
∑p+q

i=p+2(i− p− 1)Ri,

Rp+q+r −→ Rp+q+r + 2 ·Rp+q+r−1,
Rp+q+r−1 ←→ Rp+1,

Rp+q+r−1 −→ Rp+q+r−1 +−p ·Rp+1

∑p+q
i=p+2(i− p)Ri.

Rp+q+r−1 −→ Rp+q+r−1 + Rp+q+1,
Rp+q+r−1 −→ q ·Rp+q+r−1,
Rp+q+r−1 −→ Rp+q+r−1 + p ·Rp+q+1,

Rp+q+r−1 −→ Rp+q+r−1 +
∑p+q+r−2

i=p+q+3 (i− p− q − 1)(p + q)Ri,

Rp+q+r−1 ←→ Rp+q+r,
Rp+q+r −→ 2 ·Rp+q+r,
Rp+q+r −→ Rp+q+r + (−pr − qr − pq + 2p + 2q) ·Rp+q+r−q.

Note that we multiplied rows by q and 2, which will change the determinant. The
fully reduced matrix S is shown in Figure 15.

1
2
3
...

p− 2
p− 1

p
p + 1
p + 2
p + 3

...
p + q − 2
p + q − 1

p + q
p + q + 1
p + q + 2
p + q + 3

...
p + q + r − 2
p + q + r − 1

p + q + r



−2 1 1
1 −2 1

1 −2 1
. . .
1 −2 1

1 −2 1
1 −2 1

1 1 −2
1 −2 1

1 −2 1
. . .

1 −2 1
1 −2 1

1 −2 1
q 0 −2 1 · · · −(q − 1)

1 −3 2
1 −2 1

. . .
1 −2 1

2 −3 1
−∆ ∆



Figure 15: Fully reduced crossing matrix S of (p, q,−r) pretzel knot where ∆ =
pq + pr + qr.

The minor of the reduced matrix S obtained by removing the first row and last
column is an upper-triangular matrix with determinant 2 ·q ·∆. Our row operations
changed the determinant by a factor of q and then by a factor of 2 (there is no sign
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change since we performed an even number of row switches). Therefore, the minor
crossing matrix of K has determinant ∆ = pq + pr + qr.

We should also note that it is possible for a pretzel knot to have determinant
±1, in which case the m-nullity will be 1 for any m. (For example, the (2,−3,−5)
pretzel knot has determinant −1.) In this case, the knot is not m-colorable for any
m. This can only happen if there are both positive and negative strands in the
pretzel knot.

4.4. Fundamentally different m-colorings of pretzel knots

We now bring together the results from Sections 3.1 and 4.3 to determine the number
of fundamentally different m-colorings of any pretzel knot.
Main Theorem 2. Suppose K is a (p, q, r) pretzel knot, and m is a prime number
that divides det(K) = pq + pr + qr.

(i) If at least one of p, q, and r is relatively prime to m, then K has only one
fundamental m-coloring.

(ii) If none of p, q, and r are relatively prime to m, then K has exactly four
fundamentally different m-colorings.

Proof. By Main Theorem 1, it suffices to show that in part (a) of Main Theorem 2,
the m-nullity of K is 2, and in part (b), the m-nullity of K is 3.

Part (i): Suppose K is a (p, q, r) pretzel knot where p, q, and r are positive and at
least one twist is relatively prime to m (see Example 4). Without loss of generality,
we can assume that q is relatively prime to m (see Theorem 4). To find the m-
nullity of K we will reduce its crossing matrix modulo m. We have already reduced
this matrix over the integers in Case 1 of the proof of Theorem 6; see Figure 14.
Since m is relatively prime to q, the row operation where we multiplied by q is still
valid modulo m. Therefore, the matrix in Figure 14 is the mod m reduced crossing
matrix for K. Since m divides the determinant, this matrix clearly has m-nullity
2. The proof where q is relatively prime to m and K is a (p, q,−r) pretzel knot is
similar.

Part (ii): Suppose K is a (p, q, r) pretzel knot where p, q, and r are positive
integers and no twist is relatively prime to m (see Example 5). When reducing the
crossing matrix for K in the proof of Theorem 6, we multiplied a row by q. Since m

divides q (and in fact, also divides p and r), this operation is not permitted when
reducing modm. The row operations before this step (up to Figure 13) are legal
modm, and result in the matrix shown in Figure 16 (after taking mod m).

Notice that in Figure 16, the rows Rp+q+1 and Rp+q+r are the same. The
following operation is enough to finish reducing the matrix:

Rp+q+r −→ Rp+q+r + (−Rp+q+1).

This leaves one row of zeroes, so this matrix clearly has m-nullity 3. The proof in
the case where m is not relatively prime to any twist, and K is a (p, q,−r) pretzel
knot is similar.
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1
2
...

p− 1
p

p + 1
p + 2

...
p + q − 1

p + q
p + q + 1
p + q + 2

...
p + q + r − 1

p + q + r



−2 1 1
1 −2 1

. . .
1 −2 1

1 −2 1
1 · · · 1 −2

1 −2 1
. . .
1 −2 1

1 −2 1
0 −2 1 · · · · · · 1

1 −2 1
. . .
1 −2 1

0 −2 1 · · · 0 1



Figure 16: Partially reduced crossing matrix of a (p, q, r) pretzel knot where no
twist is relatively prime to the modm.

Example 4. The (3, 15, 5) pretzel knot has determinant 135 = 33 ·5, and thus is m-
colorable (for prime m) if and only if m = 3 or m = 5. Because m = 3 is relatively
prime to at least one of the twists, the (3, 15, 5) pretzel knot has 3-nullity 2, and
therefore only one fundamental 3-coloring (shown in Figure 17). Similarly, m = 5
is relatively prime to at least one twist, the (3, 15, 5) pretzel knot has 5-nullity 2,
and only one fundamental 5-coloring (shown in Figure 18).

Figure 17: The 3-coloring of
the (3, 15, 5) pretzel knot.

Figure 18: The 5-coloring of
the (3, 15, 5) pretzel knot.

Example 5. The pretzel knot (3, 6, 9) has determinant 99 = 32 · 11, and thus is
thus both 3-colorable and 11-colorable. Because 3 divides all three twists, the knot
has 3-nullity 3, and therefore four fundamentally different 3-colorings (shown in
Figure 19). On the other hand, since 11 is relatively prime to at least one twist (in
fact, to all of the twists), the 11-nullity is 2. Therefore, the (3, 6, 9) pretzel knot
only one fundamental 11-coloring (shown in Figure 20).
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Figure 19: Four fundamentally different 3-colorings of the pretzel knot (3, 6, 9).
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Figure 20: The (3, 6, 9) pretzel knot has one fundamental 11-coloring.
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