
p-Colorings of Weaving Knots

Layla Oesper
Pomona College

Claremont, CA 91711
layla.oesper@pomona.edu

September 26, 2005

Abstract

We explore the p-colorability of a family of knots known as weaving
knots. First, we show some general results pertaining to p-coloring any
(m, n) weaving knot. We then determine the p-colorability of any (m, 3)
weaving knot, and designate these p-colorings into two separate types,
whose characteristics we begin to explore. We also partially classify some
of the p-colorings for any (m, n) weaving knot when n is even. Finally, we
discuss different ways to count the number of p-colorings of a knot and
then use these counting methods to calculate the number of one type of
p-coloring of (m, 3) weaving knots.

1 Introduction

The knot invariant known as p-colorability, accredited to Ralph Fox, has been
studied in context with certain families of knots. Previous research involving p-
colorability includes several methods for completely classifying the p-colorablity
of the family of torus knots [3] [4]. Torus knots are an example of a family of
knots where every member is the closure of a braid having a braid word of the
form wm, where w is a base word. Hence, each torus knot is defined by two
parameters: the number of strands in the braid and the number of times the
base word is repeated. We say that such a family of knots is generated by a
base word. This paper focuses on classifying the p-colorability of weaving knots,
another family of knots generated by a base word.

This paper is an exploration into the p-colorablity of weaving knots and
presents several notable results. Our main results include a complete classifica-
tion of the p-colorablity of all (m, 3) weaving knots, and a partial classification
of the p-colorablity of (m, n) weaving knots when n is even. We also exhibit
several other relationships between p-colorablity and (m, n) weaving knots.

When investigating p-colorablity, a natural extension is to count the number
of p-colorings, another knot invariant. A result concerning the number of p-
colorings of torus knots by finite Alexander quandles appears in a recent paper
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by Asami and Kuga [2]. A special case of this result, using only elementary
techniques, appears in [4]. The number of fundamentally different p-colorings
or p-coloring classes has also been considered in relationship to pretzel knots [5].
We use two different techniques to count the number of one type of p-coloring
of (m, 3) weaving knots.

The following is a brief outline of the organization of this paper.
In Section 2 we present basic definitions of knots, invariants, p-colorability,

determinants, crossing matrices, p-nullity, and braids. Even though p-colorability
can be defined for any integer p ≥ 2, in this paper we will only address cases
where p is an odd prime.

In Section 3 we begin our exploration of weaving knots. We present and prove
some basic properties of all weaving knots in relationship to p-colorability.

Section 4 contains a complete classification of all (m, 3) weaving knots, our
first main result. We accomplish this by calculating the determinant and hence,
the p-colorability of any such knot. We can partition these p-colorings into two
types, each with distinct properties.

In Section 5 we present a partial classification of (m, n) weaving knots by
showing that an (m, n) weaving knot is p-colorable for all p|m when n is even.
This is our second main result.

In Section 6 we discuss the different ways to count the number of p-colorings
of a knot. We then use these techniques to count one type of p-coloring of (m, 3)
weaving knots.

2 Definitions and Background Information

We begin by presenting some basic definitions and background pertaining to
knots and p-colorability. See also [1] and [7].

2.1 Knots and Invariants

A mathematical knot is a fairly intuitive concept. Imagine taking a piece of
string, tying a knot in it and then attaching the ends of the string together.
Assume that such an object has no thickness and you have a mathematical
knot [1]. In more precise terminology, a mathematical knot is a simple, closed
polygonal curve in R

3 [7]. In order to study these objects, mathematicians often
use a 2-dimensional representation of a knot called a projection. In this paper
all knots will be represented using such 2-dimensional projections. A projection
of a knot is not unique, as seen in Figure 1.

The field of knot theory is precisely what its name describes, the study
of mathematical knots. One of the main goals of this field is to be able to
discriminate between any two distinct knots. Given any two knot projections,
we would like to be able to tell whether or not they represent the same knot. If a
person is given two pieces of knotted string, a logical way to try and distinguish
if they were the same knot would be to try and deform one piece of knotted
string to look like the other one. Such an approach also makes sense in order to
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Figure 1: Two projections of the figure-eight knot.

distinguish between mathematical knots. However, there are some restrictions
on how you are allowed to deform a projection of a mathematical knot.

There are two basic maneuvers we can use to deform a knot projection. The
first involves deformations that do not affect the crossings in the projection.
This type of deformation is called planar isotopy, and involves imagining the
plane as being made of rubber with the projection drawn on it. You can then
deform the rubber and hence the projection without affecting the crossings (see
Figure 2) [1].

Figure 2: An example of planar isotopy.

The second way to change a projection of a knot involves three allowable
alterations of the crossings in the projection called the Reidemeister moves. The
first Reidemeister move allows us to add or remove a kink in the knot (see Figure
3). The second Reidemeister move allows us to add or remove two crossings by
sliding one strand across another (see Figure 4). The third Reidemeister move
allows us to slide one strand over or under a crossing (see Figure 5) [1].

OR

Figure 3: Type I Reidemeister move.

In 1926 the German mathematician Kurt Reidemeister showed that given
two projections of the same knot, there exists some sequence of planar isotopies
and Reidemeister moves that deform one projection into the other. We say that
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OR

Figure 4: Type II Reidemeister move.

OR

Figure 5: Type III Reidemeister move.

a property of a knot is an invariant if it always gives equivalent knots the same
value. Similarly, we also say that a property of a knot is invariant under the
Reidemeister moves if it does not depend upon the projection [1]. Some simple
examples of knot or link invariants are linking number, bridge number, and the
Jones polynomial.

2.2 p-colorablity

Definition 1. [7] Given an odd prime number p we say that a projection of a
knot K is p-colorable if every strand in the projection can be labeled using the
numbers 0 to p− 1, with at least 2 of the labels distinct, so that at each crossing
we have

2x − y − z = 0 mod p, (1)

where x is the value assigned to the overstrand and y and z are the values
assigned to the understrands of the crossing.

This definition requires a brief explanation on why we choose p to be a odd
prime. We exclude 2 from consideration since the only knot or link that could
possibly be 2-colorable is a link with at least two components. In fact, every
such link is 2-colorable [8]. While we could consider all integers > 2, we choose
to exclude non-primes since their p-colorability is determined by their prime
divisors.

Proposition 1. If a projection of a knot K is p-colorable then every projection
of K is p-colorable.

Proposition 1 is equivalent to saying that p-colorablity is invariant under the
Reidemeister moves, and hence is a knot invariant. In fact, the well known knot
invariant of tricolorability is actually a special case of p-colorability with p = 3.
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While p-colorability is far from a complete knot invariant, it is indeed an
invariant and does distinguish between some knots. It also provides a platform
for defining other knot invariants, like the number of p-colorings.

2.3 Matrices, determinants, and p-nullity

A circulant matrix is a square matrix where the entries of each row are identical
to the entries of the previous row, except that they have been shifted to the
right one position and wrapped around [6]. Equation 2 is an example of such a
matrix.

C = Circ(c1, c2, · · · , cn) =











c1 c2 · · · cn

cn c1 · · · cn−1

...
...

...
c2 c3 · · · c1











. (2)

A p-coloring of a projection P of a knot K determines a linear equation
at each crossing as indicated in Equation 1. The matrix defined by the set of
linear equations for all crossings in P is called the (major) crossing matrix of P .
This matrix can be constructed by labeling all crossings and strands in P with
distinct labels. Since the number of crossings and strands is always equal we
can then construct a square matrix with a row for each crossing and column for
each strand. For each row j place −2 in the (i, j) position where the ith column
represents the overstrand of the jth crossing. Also place a 1 in the (k, j) and
(l, j) positions where the kth and lth columns represent the understrands of the
jth crossing. All other entries in the matrix are 0 [7].

A minor crossing matrix for P is the matrix obtained by deleting any row and
column from the crossing matrix (or major crossing matrix) of P . The absolute
value of the determinant of any minor crossing matrix for any projection of K

is called the determinant of K [7].

Proposition 2. Suppose p is a prime number. A knot K is p-colorable if and
only if p divides det(K).

Proof. A system of linear equations has a solution if and only if the determinant
of the corresponding matrix is 0. So, when working mod p, a solution exists if
the determinant is equal to 0 mod p. Hence, a knot K is p-colorable if and only
if p-divides det(K).

Definition 2. The p-nullity of a knot K is the dimension of the null space of
any associated crossing matrix mod p.

The p-nullity of a knot K is well defined since it is independent of projection
and choice of labeling scheme [7].

2.4 Braids

A braid is a set of n strings which can be interpreted as attached to a horizon-
tal bar at the top and the bottom. Each string in a braid must always head
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downwards; in other words, each string will intersect a horizontal plane exactly
once. By connecting each of the strands on the top bar with the corresponding
strands on the bottom bar we obtain a knot or link. The knot or link obtained
in this manner is referred to as the closure of the braid. In 1923 J.W. Alexander
showed that every knot is the closure of some braid [1]. When a braid represents
the knot K created by its closure, it is called the braid representation of K [1].

Definition 3. Intersect a braid B with a horizontal line l such that no strand
in the braid intersects l at the same place as any other strand. At the height of
l we say that the ith strand of B is the ith strand from the left to intersect l.

Using Definition 3 any crossing in a braid can be described by which strands
cross over and under each other at the height of the specified crossing. A braid
word is a description of a projection of a braid that is arranged so that no two
crossings occur at the same height. Every crossing where strand i crosses over
strand i + 1 is denoted as σ1, and every crossing where strand i +1 crosses over
strand i is denoted as σ−1

i . The concatenation of these symbols as we travel
downward from the top crossing of a braid B is the braid word for B. For
example, the braid representation of the knot 61 in Figure 6 has braid word
σ3σ3σ2σ

−1
3 σ−1

1 σ2σ
−1
1 .

Figure 6: The braid representation of the 61 knot.

We say that a knot is generated by a base word if the braid word for any
member can be written as wm where w is called a base word. Each time the
base word is repeated in the braid representation is called a cycle through the
base word. For example, the (m, n) torus knot is the closure of the n-strand
braid word

(σ1σ2 · · ·σn−2σn−1)
m.

So, in this case we see that every (m, n) torus knots is generated by a base word,
with that base word being (σ1σ2 · · ·σn−2σn−1). Figure 7 provides an example
of what the braid representation of a torus knot looks like.
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Figure 7: The braid representation of the (5, 2) torus knot.

3 Some Observations about Weaving Knots

In this section we describe the family of weaving knots and some basic p-
colorability properties it exhibits.

3.1 Weaving knots

Weaving knots can be described using two parameters, so we will henceforth re-
fer to any weaving knot as an (m, n) weaving knot. We define an (m, n) weaving
knot to be the knot K that has a braid representation of the form

(σ1σ
−1
2 σ3σ

−1
4 . . . σ±1

n−1)
m

where the final term of the base word is
{

σn−1, if n is even
σ−1

n−1, if n is odd.

Clearly, weaving knots are generated by a base word. Figure 8 provides
some examples of what braid representations of weaving knots look like. The
two parameters for an (m, n) weaving knot translate directly to its braid repre-
sentation where m is the number of cycles through the base word, and n is the
number of strands in the braid.

For purposes of notation, in this paper when we refer to a knot as Wm,n we
are indicating that we are discussing the (m, n) weaving knot.

3.2 p-coloring properties of Wm,n

In this subsection we will explore some general properties of p-colorings of all
(m, n) weaving knots.

Theorem 1. For any odd prime p and any n ∈ Z
+, there exists some m ∈ Z

+

such that Wm,n is p-colorable.

Before we begin our proof, we need to first add to our framework of defini-
tions and properties.
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Figure 8: Braid representations of the (m, 3) and (m, 4) weaving knots.

Definition 4. Let K be a knot that is generated by a base word. Given a
p-colored braid representation of K, the jth color array of K is the element of
(Zp)

n whose ith component is the color of the ith strand (see Definition 3) of the
braid representation of K after j cycles of the base word have been completed.

In order to capture the idea that the top and bottom strands in a braid
representation are continuous we require the following stipulation. In addition
to the standard rules of p-colorability, a coloring of a braid representation of a
knot K is a valid p-coloring if and only if its initial color array is exactly the
same as its final color array.

Observation 1. A p-coloring of any knot K is entirely determined by the initial
color array of a braid representation for K.

This observation can be justified by examining the crossings in a braid repre-
sentation of a knot where the crossings are arranged to occur at different heights.
Once the braid is given an initial coloring array the overstrand and the incoming
understrand of the top crossing must be colored. Using the p-colorablity equa-
tion, Equation 1, this forces the coloring of the outgoing understrand. Now,
for the next crossing down in the braid the overstrand and the incoming un-
derstrand will be colored and hence the coloring of the outgoing understrand is
forced by Equation 1. This process continues all the way down the braid. After
the last crossing is passed, all strands will be colored. If the induced coloring is
a valid p-coloring, then it is clear to see that it was entirely determined by the
initial color array.

We now proceed with the proof of Theorem 1.

Proof. Let p be any odd prime and n any positive integer. There exist a finite
number of permutations of n of these p elements. So, there are a finite number,
pn to be exact, of possible distinct coloring arrays (each having n elements)
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that can arise when attempting to p-color a knot with our given p. So, let’s
take a knot Wpn,n and give it an initial color array of (c1, c2, . . . , cn) where each
ci ∈ Zp and at least two labels are distinct. This coloring will induce pn more
coloring arrays, one after each cycle. Since we have a total of pn + 1 coloring
arrays and pn possible distinct coloring arrays, for some integers r and s, with
0 ≥ r, s ≥ pn and r < s, the rth color array equal to (c′1, c

′
2, . . . , c

′
n) must equal

the sth color array.
We now want to show that Ws−r,n is p-colorable with initial color array equal

to (c′1, c
′
2, . . . , c

′
n). To do so, we need only to show that 2 distinct labels are used

in the p-coloring induced by this initial coloring array. Seeking a contradiction,
let’s assume not, so c′1 = c′2 = · · · = c′n. By Equation 1, this implies that the
(r−1)st color array of Wpn,n must equal (c′1, c

′
2, . . . , c

′
n). By the same argument,

the (r − 2)nd color array of Wpn,n must also equal (c′1, c
′
2, . . . , c

′
n). Continuing

with this line of reasoning, we get that the initial color array for Wpn,n is
(c′1, c

′
2, . . . , c

′
n). However, this is a contradiction to our original decision that the

initial color array have at least two distinct labels. Hence, the knot Ws−r,n is
p-colorable with initial color array (c′1, c

′
2, . . . , c

′
n).

Theorem 2. Given a knot Wm,n, if q divides m and Wq,n is p-colorable for a
given prime p, then Wm,n is p-colorable.

Proof. Since q divides m, there exists r ∈ Z
+ such that m = qr. Recall that

the braid word for Wm,n is

(σ1σ
−1
2 σ3σ

−1
4 . . . σ±1

n−1)
m = (σ1σ

−1
2 σ3σ

−1
4 . . . σ±1

n−1)
qr

= ((σ1σ
−1
2 σ3σ

−1
4 . . . σ±1

n−1)
q)r

which is the braid word for Wq,n to the rth power. Since Wq,n is p-colorable
there exists some initial coloring array (c1, c2, . . . , cn) that induces a valid p-
coloring of Wq,n. So, give Wm,n the initial coloring array (c1, c2, . . . , cn) and
induce the coloring of all strands. After q cycles Wm,n will have qth color array
equal to the initial color array since Wq,n is p-colorable. In fact this color array
will reappear every q cycles due to the same reasoning. Hence, for all s ∈ Z

+

the qsth color array of Wm,n will be (c1, c2, . . . , cn). Hence, the qrth color array
of Wm,n will be (c1, c2, . . . , cn). So, the initial and final color arrays of Wm,n

are equal, and two distinct labels must be used since (c1, c2, . . . , cn) induces a
valid p-coloring of Wq,n. Therefore, Wm,n is p-colorable.

4 p-Colorings of Wm,3

In this section we will classify p-colorability of all knots Wm,3 and discuss some
properties of these p-colorings.
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4.1 Calculating p-colorability of Wm,3 for small m

We would like to be able to calculate the p-colorability of any knot Wm,n, so we
begin with the case where n = 3. We started this process by directly calculating
the p-colorablity of knots Wm,3 for small values of m shown in Table 2.

number of cycles (m) p-colorability
2 5
3 -
4 3,5
5 11
6 5
7 29
8 3,5,7
9 19
10 5, 11
11 199
12 3,5
13 521
14 5,13,29
15 11,31
16 3,5,7,47
17 3571
18 5,17,19
19 9349
20 3,5,11,41

Table 1: The p-colorability of (m, 3) weaving knots for small values of m.

When this table is first analyzed it might appear that for every prime m > 3
there is exactly one p for which Wm,3 is p-colorable. However, this apparent
pattern is not true. When m = 23, W23,3 is 461-colorable as well as 139-
colorable.

In order to get a better grasp on the data and look for patterns, we wrote
a computer program to calculate the p-colorability Wm,3. After running the
program for about a month we were only able to calculate the p-colorability of
the Wm,3 for m up to 397. However, this did provide the basis for discovering
a pattern within the p-colorablity of Wm,3.

4.2 p-colorability of Wm,3 using determinants

In this subsection we calculate the p-colorability of any knot Wm,3. We do this
by calculating the determinant of Wm,3 and applying Proposition 2.
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Main Theorem 1. An knot Wm,3 is p-colorable only for all odd primes p

dividing
−(C2m−2 + 1)(C2m) + (C2m−1)

2

where Cj =
∑j

i=1
(−1)i+1fi and fi is the ith fibonacci number (f1 = 1, f2 = 1).

In order to prove Main Theorem 1 we want to first calculate the determinant
of Wm,3. To do so we will first construct a crossing matrix for Wm,3. The choice
of labeling crossings and strands in Figures 9 and 10 induce the 2m×2m crossing
matrix M for Wm,3 in Equation 3.

.

.

.

.

.

.

.

.

.

1
2

3 4

2m-1 2m

Figure 9: Labeling of cross-
ings.

.

.

.

.

.

.

.

.

.

1

2

3 4

2m-1
2m

Figure 10: Labeling of
strands.

M = Circ(1, 0, . . . , 0, 1,−2, 0) (3)

Write M as the block matrix

M =

(

I A

Z R

)

,

where I is (2m − 3) × (2m − 3) and R is 3 × 3.
In order to calculate the determinant of Wm,3 we will begin by applying the

row operations in Equation 4 that reduce M to the matrix M ′ whose upper left
square block I ′ is (2m − 3) × (2m − 3) identity matrix.

R3 −→ R3 + 2R1,

Rk −→ Rk + 2Rk−2 − Rk−3, for 4 ≤ k ≤ 2m − 1,
R2m −→ R2m − R2m−3.

(4)

After these row operations M is now of the form:

M ′ =

(

I ′ A′

Z ′ R′

)
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where I ′ is the (2m− 3) × (2m− 3) identity matrix and Z ′ is the (2m − 3)× 3
zero matrix. So, M ′ is now a block upper triangular matrix. We now want to
look more closely at the specific entries in A′ and R′. Let’s begin by studying
the entries in A′.

Prior to applying to row operations in Equation 4 to M , the matrix A was
of the form:

A =



















1 −2 0
0 1 −2
0 0 1
0 0 0
...

...
...

0 0 0



















.

Let

A1 =
(

1 −2 0
)

, A2 =
(

0 1 −2
)

, and A3 =
(

0 0 1
)

.

So, after the reductions in Equation 4 every row of A′ will be some linear
combination of A1, A2, and A3. Since the first two rows of M are left unchanged
by the reductions steps in Equation 4, A′

1 = A1 and A′
2 = A2.

Proposition 3. For j such that j ≥ 3, row A′
j in the matrix A′ will have the

following form after the reduction steps in Equation 4:

A′

j = CjA
′

1 + Cj−1A
′

2 + Cj−2A
′

3

where Cj =
∑j

i=1
(−1)i+1fi and fi is the ith fibonacci number (f1 = 1, f2 = 1).

In order to prove Proposition 3 we need the following identity.

2Cn−2 − Cn−3 = Cn for all n > 3. (5)

To derive this identity we split our work into two cases.

Case 1. Assume n is even.

2Cn−2 − Cn−3 = 2

n−2
∑

i=1

(−1)i+1fi −

n−3
∑

i=1

(−1)i+1fi

=

n−2
∑

i=1

(−1)i+1fi − fn−2

= Cn−2 − fn−2

= Cn−2 + fn−1 − (fn−1 + fn−2)

= Cn−2 + fn−1 − fn

= Cn
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Case 2. Assume n is odd.

2Cn−2 − Cn−3 = 2

n−2
∑

i=1

(−1)i+1fi −

n−3
∑

i=1

(−1)i+1fi

=

n−2
∑

i=1

(−1)i+1fi + fn−2

= Cn−2 + fn−2

= Cn−2 − fn−1 + (fn−1 + fn−2)

= Cn−2 − fn−1 + fn

= Cn

We can now prove Proposition 3.

Proof. We will proceed by induction on j. The row reductions in Equation 4
prescribe that A′

3 = 2A1 + 0A2 + A3. Notice that C3 = 1 − 1 + 2 = 2, C2 =
1 + 1 = 2, C1 = 1. Hence, A′

3 = 2A1 + 0A2 + A3 = C3A1 + C2A2 + C1A3, and
the proposition holds.

Similarly, A′
4 = −A1 + 2A2 after the reduction steps. Since, C4 = −1, C3 =

2, C2 = 2, we see that A′
4 = C4A

′
1 + C3A

′
2 + C2A

′
3 and the proposition holds.

Now, we assume that the proposition holds for rows up to n−1. We want to
show that the proposition holds for row n. By the reduction steps in Equation
4 we see that

A′

n = 2A′

n−2 − A′

n−3

= 2(Cn−2A1 + Cn−3A2 + Cn−4A3) − (Cn−3A1 + Cn−4A2 + Cn−5A3)

(by inductive hypothesis)

= (2Cn−2 − Cn−3)A1 + (2Cn−3 − Cn−4)A2 + (2Cn−4 − Cn−5)A3.

Using Identity 5 we see that 2Cn−2 − Cn−3 = Cn, 2Cn−3 − Cn−4 = Cn−1 and
2Cn−4 − Cn−5 = Cn−2. Thus, we see that A′

n = CnA1 + Cn−1A2 + Cn−2A3.
So, the proposition holds for j = n. Hence, by induction the proposition holds
for all j ≥ 3.

Now that we know the makeup of the entries in A′ we can determine the
entries in R′.

Prior to the row operations in Equation 4 we had

R =





1 0 0
0 1 0
−2 0 1



 .

Let

R1 =
(

1 0 0
)

, R2 =
(

0 1 0
)

, and R3 =
(

−2 0 1
)

.
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Notice that we can rewrite these rows in terms of A1, A2, and A3 where

R1 = A1 + 2A2 + 4A3

R2 = A2 + 2A3

R3 = −2A1 − 4A2 − 7A3.

Using these calculations, the reduction steps in Equation 4, and Proposition
3, we see that the rows of R′ will have the following form:

R′

1 = C2m−2A1 + C2m−3A2 + C2m−4A3 + R1

= C2m−2A1 + C2m−3A2 + C2m−4A3 + (A1 + 2A2 + 4A3)

= (C2m−2 + 1)A1 + (C2m−3 + 2)A2 + (C2m−4 + 4)A3

R′

2 = C2m−2A1 + C2m−3A2 + C2m−4A3 + R2

= C2m−2A1 + C2m−3A2 + C2m−4A3 + (1A2 + 2A3)

= C2m−2A1 + (C2m−3 + 1)A2 + (C2m−4 + 2)A3

R′

3 = −(C2m−3A1 + C2m−4A2 + C2m−5A3) + R3

= −(C2m−3A1 + C2m−4A2 + C2m−5A3) + (−2A1 − 4A2 − 7A3)

= (−C2m−3 − 2)A1 + (−C2m−4 − 4)A2 + (−C2m−5 − 7)A3.

We have now been able to write all rows in A′ and R′ in terms of A1, A2, and
A3. Using this knowledge, we want to look at the specific elements in R′ in order
to help us calculate the determinant of the knot Wm,3. Since row reductions do
not alter the determinant of a matrix det(Wm,3) is equal to the absolute value
of the determinant of any minor crossing matrix of M ′.

Since we know A1, A2 and A3, and all entries in R′ are just linear combina-
tions of these rows it is a simple exercise to determine the exact elements in R′

as shown below.

R′ =





C2m−2 + 1 (C2m−2 + 1)(−2) + (C2m−3 + 2) (C2m−3 + 2)(−2) + (C2m−4 + 4)
C2m−1 (C2m−1)(−2) + (C2m−2 + 1) (C2m−2 + 1)(−2) + (C2m−3 + 2)

(−C2m−3 − 2) (−C2m−3 − 2) + (−C2m−4 − 4) (−C2m−4 − 4)(−2) + (−Cm−5 − 7)





Using some basic algebra and Identity 5 we can simplify many entries in R′

to yield the following matrix:

R′ =





C2m−2 + 1 −C2m −C2m−1

C2m−1 −2C2m−1 + C2m−2 + 1 −C2m

−C2m−3 − 2 C2m−1 C2m−2 + 1



 . (6)

Now that we know all the entries in M ′ we can begin our proof of Main
Theorem 1.
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Proof. In order to find the determinant of Wm,3 let’s form a minor matrix M ′′

of M ′ by deleting the bottom or 2mth row of M ′ and the second to last or
(2m − 1)th column of M ′. This leaves M ′′ in the following form:

M ′′ =

(

I ′ A′′

Z ′′ R′′

)

.

So A′′ is the 2 × (2m − 3) matrix equals to the matrix A′ with the 2nd column
removed, Z ′′ is the (2m − 3) × 2 zero matrix, and R′′ is of the following form:

R′′ =

(

C2m−2 + 1 −C2m−1

C2m−1 −C2m

)

.

Since M ′′ is in upper block triangular form det(Wm,3) = |det(M ′′)| = |det(I ′)det(R′′)|.
But, since I ′ is the identity matrix we can explicitly determine det(Wm,3) as
shown in Equation 7.

det(Wm,3) = |det(M ′′)|

= |det(R′′)|

= |(C2m−2 + 1)(−C2m) − (−C2m−1)(C2m−1)|

(7)

By Proposition 2, Wm,3 is p-colorable only for all odd primes p dividing

(C2m−2 + 1)(−C2m) − (−C2m−1)(C2m−1)

= −(C2m−2 + 1)(C2m) + (C2m−1)(C2m−1)

= −(C2m−2 + 1)(C2m) + (C2m−1)
2.

4.3 Types of p-colorings of Wm,3

By Main Theorem 1 we know that any arbitrary knot Wm,3 is p-colorable if and
only if p divides −(C2m−2 + 1)(C2m) + (C2m−1)

2. This only occurs when

(C2m−2 + 1)(C2m) mod p = (C2m−1)(C2m−1) mod p.

We will split this up into two cases in order to distinguish two different types
of p-colorings that arise.

Case 1. (C2m−2 + 1)(C2m) mod p = (C2m−1)(C2m−1) mod p = 0 mod p

We say that p-colorings that arise under Case 1 are Type I p-colorings. The
3-coloring of W4,3, the 29-coloring of W7,3 and the 5-coloring of W10,3 are ex-
amples of Type I colorings.

Case 2. (C2m−2 + 1)(C2m) mod p = (C2m−1)(C2m−1) mod p 6= 0 mod p
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We say that p-colorings that arise under Case 2 are Type II p-colorings. The
5-colorings of W2,3, W4,3, and W8,3 are all examples of Type II colorings.

Let’s look at some properties pertaining to these two different types of p-
colorings.

Lemma 1. If a knot Wm,3 has a Type I p-coloring then p2 must divide det(Wm,3).

Proof. Suppose Wm,3 has a Type I p-coloring. Since (C2m−2 +1)(C2m) mod p =
(C2m−1)(C2m−1) mod p = 0 mod p, p must divide C2m−1 and either (C2m−2+1)
or (C2m). In our original crossing matrix M (see Equation 3) for Wm,3 the sum
of any row or column is always 0. The row operations we performed on M will
not change this fact. Recall that the only non zero elements in row (2m − 2)
in the reduced matrix M ′ are (C2m−2 + 1), (−C2m), and (−C2m−1), as seen in
Equation 6. Hence, we know that the following must be true:

(C2m−2 + 1) + (−C2m) + (−C2m−1) = 0.

But since p must divide C2m−1 and either (C2m−2 + 1) or (C2m), then p must
divide both (C2m−2+1) and (C2m). Hence, p2 must divide −(C2m−2+1)(C2m)+
(C2m−1)

2. Therefore, p divides |− (C2m−2 +1)(C2m)+ (C2m−1)
2| = det(Wm,3).

Theorem 3. A knot Wm,3 has a Type I p-coloring if and only if all entries of
the matrix R′ are divisible by p, where R′ is the bottom right 3×3 matrix of the
crossing matrix M ′ for Wm,3 after the reduction steps in Equation 4.

Proof. Recall from the proof of Lemma 1 that p divides C2m, C2m−1, and
C2m−2 + 1. So clearly every entry in the first two rows of R′ seen in Equa-
tion 6 are divisible by p. Also recall that the sum of the entries in any row of R′

must equal 0 since all non zero entries in these rows in the crossing matrix M ′

occur in R′. Hence, (−C2m−3 − 2) + C2m−1 + (C2m−2 + 1) = 0, which implies
that p must divide −C2m−3 − 2. Hence p divides all entries in the third row of
R′. Therefore, p divides all entries in R′.

Corollary 4. A Type I p-coloring of a knot Wm,3 has p-nullity 3.

Proof. Let p be an odd prime such that a knot Wm,3 is p-colorable with a Type
I p-coloring. Let M be the associated crossing matrix as seen in Equation 3, and
M ′ the matrix after the reduction steps in Equation 4. In order to calculate
the p-nullity of Wm,3 we take all entries in M ′ mod p. Since we know that
M ′ is upper block triangular with a (2m − 3) × (2m − 3) identity block on the
diagonal, then we know the first (2m− 3) rows of M ′ are linearly independent.
Now using the fact that M ′ is upper block triangular and Theorem 3, we know
that the bottom 3 rows of M ′ taken mod p are all rows of zeros. Hence, Wm,3

has p-nullity 3.
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Type I p-colorings appear to be much more prevalent than Type II p-
colorings. In fact, in our calculations of the p-colorablity of Wm,3 for 2 ≤ m ≤
397 we have seen very few and only very specific Type II p-colorings. However,
we have yet been unable to prove the following conjecture that captures the
essence of this observation.

Conjecture 1. The only Type II p-colorings for a knot Wm,3 are the p-colorings
when p = 5 and m is not divisible by 10.

5 p-Colorings of (m, n) Weaving Knots

In this section we will begin to classify p-colorability of the (m, n) weaving knots
when n is even.

5.1 Calculating p-colorability of Wm,n when n is even

After calculating the p-colorablity for all knots Wm,3 it makes sense to try and
expand on this to calculate the p-colorablity of all knots Wm,n. However, this
task is more involved than simply being a generalization of the cases we have
already calculated. Hence, we have so far only been able to calculate the p-
colorablity for some limited cases.

Main Theorem 2. Suppose Wm,n is a weaving knot and p is an odd prime. If
n is even and p|m, then Wm,n is p-colorable.

Before beginning the proof of this theorem, we need to build up a little more
notation. Let K be a knot generated by a base word have m cycles through that
base word. Let (c1, c2, · · · , cn) be the jth color array for the braid representation
of K, and consider the map φ : (Zp)

n → (Zp)
n where

φ(jth color array of K) = (j + 1)st color array of K

and the (j + 1)st color array of K is the color array induced according to the
rules of p-colorablity (see Equation 1).

We also define the map φj to be the composition of j copies of φ. Notice
that φj : (Zp)

n → (Zp)
n is then the map defined by

φj( initial color array of K) = jth color array of K.

For K to be p-colorable there must exist some initial color array (c1, c2, . . . , cn)
such that φm(c1, c2, . . . , cn) = (c1, c2, . . . , cn). Lastly, we define the map φ

j
i :

(Zp)
n → (Zp) to be the ith coordinate map of φj . We now can proceed with

our proof of Main Theorem 2.

Proof. Let Wm,n be a weaving knot where n is even, and let p be an odd prime
such that p|m. We are going to show that giving Wm,n an initial color array of
the form (c, c+1, c, c+1, . . . , c, c+1) where c ∈ Zp will induce a valid p-coloring.

In this proof we want to view the strands of our braid like pieces of string
that cross over and under each other. So, for now we will consider the ith strand
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to be the entire curve that starts in the ith position from the left at the top of
the braid representation. At any given height in the braid representation we will
refer to the horizontal placement of a strand in the braid as its strand position.

We want to start by directly calculating φ(c, c+1, c, c+1, . . . , c, c+1). To do
this we will individually calculate φi(c, c + 1, c, c + 1, . . . , c, c + 1) for 1 ≤ i ≤ n

and then compile this information to determine the desired result.

.   .   .

.   .   .

c    c+1    c    c+1             c    c+1

Figure 11: The jth cycle of a knot Wm,n with n even given a jth color array of
(c, c + 1, c, c + 1, . . . , c, c + 1).

First, notice that φi(c, c + 1, c, c + 1, . . . , c, c + 1) = c for even i such that
1 ≤ i < n. This is clear to see by looking at Figure 11. After one cycle through
the braid word the strands in the even strand positions, except for the nth

position are precisely the strands that are the overstrands of the crossings in
the cycle through the base word. Hence, they do not change color anywhere in
the cycle.

Now, we want to look at φi(c, c+1, c, c+1, . . . , c, c+1) for i = n. Let’s start
by looking at the first strand in our colored cycle through the base word. This
is the strand that starts out in the first strand position and ends up in the nth

strand position after weaving over and under the intermediate strands. Notice
that in Figure 11 this strand passes under every other strand, and only those
strands. Since we have an initial color array of (c, c+1, c, c+1, . . . , c, c+1) this
means that this strand, initially colored with c, passes only under strands of the
color c. Using Equation 1, our p-colorablity equation, we see that this strand
remains colored c throughout the entire cycle since 2c − c = c. Hence, we see
that φn(c, c + 1, c, c + 1, . . . , c, c + 1) = c.

Now, we can calculate φi(c, c+1, c, c+1, . . . , c, c+1) for odd i such that 1 ≤
i < n. Notice by looking at Figure 11 that each of these strands is the outgoing
understrand of an intersection with the overstrand being colored c (since the
first strand remains colored c as seen above) and the incoming understrand
being colored c + 1. Using, the p-colorablity equation we see that for odd i

φi(c, c + 1, c, c + 1, . . . , c, c + 1) = 2(c) − (c + 1)

= c − 1.

So, by compiling all of this information we see that

φ(c, c + 1, c, c + 1, . . . , c, c + 1) = (c − 1, c, c − 1, c, . . . , c − 1, c). (8)
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Using Equation 8 we can now calculate the mth color array of Wm,n.

φm(c, c + 1, c, c + 1, . . . , c, c + 1) = (c − m, c + 1 − m, c − m, c + 1 − m, . . . , c − m, c + 1 − m)

= (c, c + 1, c, c + 1, . . . , c, c + 1).

We get this final equation by using the fact that p|m and all elements of the
color array are elements of Zp and hence are taken mod p. Therefore, our initial
and final color arrays are identical. Note that since our initial color array uses
both c and c + 1 two distinct labels are used. Hence, Wm,n is p-colorable.

It is important to note that this is only a partial classification of the p-
colorings of Wm, n where n is even. Other p-colorings do exist that are not
detected in this fashion.

6 Counting the Number of p-Colorings

While p-colorability is a knot invariant, it would be nice to have a more sensitive
knot invariant that has the ability to distinguish between more knots. One way
to modify p-colorability to make it a better knot invariant is by counting the
number of different ways to p-color a knot. However, there are several ways of
managing this task. What exactly should qualify as a different coloring is not
totally obvious. We will now describe two processes for counting the number of
p-colorings.

6.1 Distinct p-colorings

Definition 5. Given any projection P of a knot K we define significant strands
of P to be a set of strands that once colored with any color, force the p-coloring
of all other strands of P to form a valid p-coloring.

Notice that the significant strands of a projection P of a knot K correspond
directly to the number of free variables in a solution to the crossing matrix M

associated with P . Hence, the number of significant strands for P is the p-
nullity of K, since, as mentioned earlier, p-nullity is independent of labeling and
projection. So, the number of significant strands for any knot K is invariant
under the Reidemeister moves.

Two p-colorings of a knot K are distinct only when the p-colorings are not
exactly identical. Hence, two p-colorings of a knot K are considered to be the
same if one projection can be lain on top of the other without any rotation or
reflection and have all colors of all strands match up. For example, in Figure
12 all of the six 3-colorings of the trefoil knot are distinct since no coloring is
exactly identical to another. The p-nullity or number of significant strands of
K directly determines the number of ways to count distinct p-colorings of K.
This is the first of two ways to ways to count p-colorings.
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Figure 12: The six distinct 3-colorings of the trefoil knot.

Theorem 5. A p-colorable knot K with p-nullity m has pm − p distinct p-
colorings.

Proof. Since, K has p-nullity m, then K has m significant strands. So, we can
choose the color for each of the m strands. Since we have p colors this gives us
pm possible combinations of colorings, all of which induce a p-coloring. However,
note that p of these choices will color all significant strands the same color, and
hence induce the trivial coloring (the coloring where only one label is used). So,
we subtract p from pm to get the total number of actual p-colorings equal to
pm − p.

6.2 Fundamentally different p-colorings and p-coloring classes

An alternate way of calculating the number of p-colorings is presented in [5]. In
that paper two p-colorings of a knot K are defined to be fundamentally different
if given a fixed projection of K, one p-coloring cannot be obtained from the other
by permuting the colors assigned to the strands (see Figure 13). A formula for
counting the number of fundamentally different p-colorings of any knot K also
appears in [5]. This formula takes in the p-nullity of a knot as a parameter.
Tables 2 and 3 present the number of fundamentally different p-colorings for
small p-nullity according to [5].

(1)                                       (2)                                        (3)

Figure 13: Colorings (1) and (2) of the 935 knot are equivalent, while coloring
(3) is fundamentally different from colorings (1) and (2).
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fundamental
p-nullity p-colorings

1 0
2 1
3 4
4 14
5 51
6 202

Table 2: The number of fundamen-
tally different p-colorings for a given
p-nullity n (the table holds for any p

provided p ≥ n).

fundamental
3-nullity 3-colorings

1 0
2 1
3 4
4 13
5 40
6 121

Table 3: The number of fundamen-
tally different 3-colorings for a 3-
nullity n knot (note the tables differ
only when p < n).

A redefinition of the concept of fundamentally different colorings as an equiv-
alence relation whose equivalence classes partition the fundamentally different
p-colorings of a knot K into p-coloring classes appears in [4]. This is accom-
plished by defining Gp(K) be the set of all p-colorings for a knot K. Note that
Gp(K) is empty only if K is not p-colorable. In order to count the number of
p-colorings in Gp(K) that differ by more than just a permutation of the col-
ors assigned to the strands we need to reformulate our original definition of
p-colorability. The following definition is clearly equivalent to Definition 1.

Definition 6. Suppose SK is the set of all strands of K. A p-coloring of a knot
K is a map

γ : SK → Zp

satisfying the condition that

2γ(sj) − γ(si) − γ(sk) = 0 mod p

for all si, sj , sk ∈ Sk at a crossing of K, where sj is the overcrossing strand and
si, sk are the undercrossing strands.

For all γ, δ ∈ Gp(K), consider the relation ∼ defined by

γ ∼ δ ⇐⇒ γ = ρ ◦ δ for some permutation ρ : Zp → Zp. (9)

Theorem 6. [4] The relation ∼ defined in Equation (9) is an equivalence rela-
tion on Gp(K).

The equivalence classes defined by ∼ for a knot K are the p-coloring classes
of K.

6.3 Counting the number of p-colorings for Wm,3

We would like to be able to apply these different means for counting the number
of p-colorings to all p-colorable Wm,n. However, we need to know the p-nullity
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of all p-colorable Wm,n in order to accomplish this goal. Therefore, we will
only look at Type I p-colorings of Wm,3 since these are the only p-colorings of
weaving knots whose p-nullity we know.

Observation 2. A knot Wm,3 with a Type I p-coloring has p3 − p distinct
p-colorings.

We can validate this observation by noticing that Corollary 4 tells us that
Wm,3 with a Type I p-coloring has p-nullity 3. Then, a direct application of
Theorem 5 tells us that Wm,3 has p3 − p distinct p-colorings.

We can also calculate the number of p-coloring classes for Type I p-colorings
of Wm,3.

Observation 3. A knot Wm,3 with a Type I p-coloring has 4 fundamentally
different p-colorings or p-coloring classes.

The justification for this observation also uses Corollary 4 which tells us that
Wm,3 with a Type I p-coloring has p-nullity 3. Tables 2 and 3 then show us that
Wm,3 has precisely 4 fundamentally different p-colorings or p-coloring classes.

7 Further Questions

(1) So far the only Type II p-colorings of Wm,3 that we have seen are those
where p = 5 and m is not divisible by 10. Can it be shown that these are the
only Type II p-colorings are can another Type II p-coloring be found?

(2) In Section 5 we were only able to provide a partial classification for p-
colorablity of all knots Wm,n when n is even. It would be nice to be able to
completely classify the p-colorablity of all (m, n) weaving knots.

(3) While the different methods of counting the number of p-colorings of knots
do define a finer knot invariant than p-colorability alone, they appear to still
leave room for improvement.

None of the mentioned methods for counting the number of p-colorings are
totally invariant under planar isotopy. Notice that in Figure 12 the top left 3-
coloring can be rotated 120 degree clockwise to obtain the top right 3-coloring.
But since the definition of distinct p-colorings does not allow such rotation,
these p-colorings are considered to be distinct. On some level it feels like these
p-colorings should be considered to be equivalent.

The invariant of p-coloring classes also has a problematic nature. In Figure
13 it is unclear whether or not there is some series of planar isotopies that
deform an element of one p-coloring class into an element of another p-coloring
class.

An interesting and potentially useful endeavor would be to take these faults
in the current ways of counting p-colorings and form a new way of counting
p-colorings that accounts for them. So, overall the goal would be to form a
way in which to count the number of p-colorings that is invariant under planar
isotopy.
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