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Abstract. We give an algorithm to calculate the Alexander poly-
nomial ∆K(t) of a knot K. We focus on the polynomials of pretzel
knots and their connection to the concept of colorability and de-
terminants of knots. In addition, we explore a different, easier ap-
proach (due to Conway) to computing the Alexander polynomial
of knots and links. To conclude, we illustrate that it is possible to
compute ∆K(t) for non-alternating knots by the Conway polyno-
mial approach.

1. Introduction

Take a piece of string. Tie a knot in it. Now glue the two ends of the
string together to form a knotted loop. The result is a string that has
no loose ends and that is truly knotted. Unless we use scissors, there
is no way that we can untangle this string. (Figure from [A].)

A knot is just a loop of string, except that we think of the string as
having no thickness, its cross-section being a single point. The knot is
then a closed curve in space that does not intersect itself anywhere.

2. The Alexander Polynomial

The first polynomial associated with knots and links was due to J.
Alexander in about 1928. This polynomial invariant was very good at
distinguishing between knots and links, and mathematicians utilized
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the Alexander polynomial to distinguish knots and links for the next
58 years.

An approach to finding the coloring number of a knot is via the
Alexander polynomial, ∆K(t), a polynomial in t. A knot can be n-
colored iff n divides the determinant |∆K(−1)|. Here is an algorithm,
(taken from [L]) to compute the Alexander Polynomial ∆K(t) of a knot,

1. Give your knot any orientation desired.
2. Number the arcs of the diagram and separately number the cross-

ings.
3. Define an (n × n) matrix, where n = number of crossings (and

arcs) according to the following procedure:
(a) If the crossing x is right handed (see Figure A), with arc i

passing over arcs j and k, enter a 1 − t in column i of row x,
enter −1 in column j of that row, enter a t in column k of
that row.

(b) If the crossing is left handed (see Figure B), enter a 1 − t in
column i of row x, enter a t in column j, enter a −1 in column
k of the row, then all the remaining entries of x are 0.
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Deleting any one of these columns and any one row yields an (n −
1) × (n − 1) matrix. The (n − 1) × (n − 1) matrix is the Alexander
matrix of K. The determinant of the Alexander Matrix is called the
Alexander polynomial of K.

Here is an example: the Alexander polynomial of the Figure 8 knot.


−1 1 − t 0 t
0 t −1 1 − t
t −1 1 − t 0

1 − t 0 −1 t

 =⇒

∣∣∣∣∣∣
−1 1 − t 0
0 t −1
t −1 1 − t

∣∣∣∣∣∣ =⇒ 1−2t+2t2

|∆K(−1)| = 5

3. Trees

Another way of finding the determinant is using trees, which are
special kinds of graphs. A graph consists of a set of points called
vertices and a set of edges that connect them. A tree is a graph that
is connected and has no closed cycles.

From a projection of an alternating knot or link, we create a corre-
sponding planar graph in the following way.

1. Shade the diagram in a checkerboard pattern.
2. Put a vertex at the center of each shaded region.
3. Connect the vertices with edges that pass through a crossing.

Note: the determinant of an alternating knot is the number of max-
imal trees in its planar graph.
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A knot in the form shown in the Figure i) below is called a (p, q, r)
pretzel knot. The integers p, q, and r refer to the number of crossings
in the three tangles at left, center and right. A (p, q, r) pretzel knot is
alternating iff p, q, and r all have the same sign.

Theorem 1. For alternating (p, q, r) pretzel knots, pq + pr + qr gives
the number of trees.

Proof: A (p, q, r) pretzel is alternating if and only if p, q, and r all
have the same sign. Lets assume they are all positive. (If they are all
negative, the argument is similar.) So p, q, and r represent the number
of crossings in the three parts of the pretzel. We are interested in
creating a planar graph from which we can derive its trees. If we follow
the procedure given above for finding trees, we can obtain the planar
graph shown in Figure ii). This graph has p edges at left, q edges down
the center, and r at right. Deleting any two edges, one each from the
left and center of the graph will leave a tree as there will remain no
closed cycles. There are pq ways to choose the two edges and pq trees.
By following the same procedure, we can obtain pr trees by removing
edges at left and at right and, finally, qr trees by removing edges at
center and at right. Hence, pq + pr + qr = total number of maximal
trees for alternating pretzel knots.
Example: Another representation of the figure 8 knot is as the (1, 2, 1)
pretzel knot. Given this, can you find its trees?
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pq + qr + qr = (1)(2) + (1)(1) + (2)(1) = 5 Trees (see below)

Since the number of maximal trees is five, that is also the deter-
minant. This agrees with the calculation made using the Alexander
polynomial ∆K(t).

4. The Conway Polynomial

As we saw above, the very first polynomial for knots was the Alexan-
der polynomial, invented back in 1928. It is a polynomial for oriented
links, and we described it in terms of a variable t. At the time of
its invention, it was defined in terms of relatively abstract mathemat-
ical concepts. It wasn’t until 1969, that John Conway found a way to
calculate the Alexander polynomial of a link using a so-called skein re-
lation, which is an equation that relates the polynomial of a link to the
polynomial of links obtained by changing the crossings in a projection
of the original link. Conway showed that the Alexander polynomial
∆K(t) can be computed using just three rules.
Rule 1:

This rule says that the polynomial of the unlink is equal to 0.
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Rule 2:

This rule is the usual one, namely that the trivial knot has a polyno-
mial equal to 1. This holds true for any projection of the trivial knot,
not just the usual one.
Rule 3:

∆(L+) = ∆(L−) − z∆(L0)

This is the skein relation. We take three projections of links L+,
L−, and L0 such that they are identical except in the region depicted
below.

These rules are enough to ensure that the Alexander polynomial is
an invariant for knots and links [A]. Given a particular projection, we
could choose a crossing such that it is one of the crossings that we would
like to change in order to turn the projection into a trivial projection.
This process of repeatedly choosing a crossing, and then applying the
skein relation to obtain two simpler links, yields a tree of links called
the resolving tree. Note that the Conway polynomial is a polynomial
in z, where z = (t1/2 − t−1/2).

Example: Compute the Conway polynomial of the trefoil knot, using
the rules above starting with a resolving tree.

We start by letting the original projection correspond to L+, so using
the skein relation equation, ∆(L+) = ∆(L−) − z∆(L0) the resolving
tree is below.
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So the trefoil Conway polynomial is

5. The Alexander polynomial for Non-alternating Knots

We want to investigate whether or not the skein relation allows us to
calculate the Alexander polynomial for non-alternating pretzel knots.
It was always clear that the application of the skein relation to a cross-
ing would eventually lead to a set of trivial links, for which we could
calculate the polynomials. In the case of non-alternating pretzel knots,
it is less clear, but is also possible.

We began by creating a table of Conway polynomials (see below) for
(2, n) torus knots and links. When the number of crossings n is odd,
we get a knot, while an even number of crossings gives a link of two
components. For knots, the choice of orientation will not change the
answer. For links orientation is very important. We will limit ourselves
to torus knots up to 5 crossings.
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Figure 1. Table of Conway polynomials

Here is a corollary to compute non-alternating pretzel knots;

Corollary 2. ∆(p, q, r) = ∆(p − 2, q, r) − z∆(p − 1, q, r)

Example: Compute the Alexander polynomial of the (1, 2, 3) pretzel
knot.
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Observe,

∆(1, 2, 3) = ∆(1 − 2, 2, 3) − z∆(1 − 1, 2, 3)

= ∆(−1, 2, 3) − z∆(0, 2, 3)

Using a resolving tree and skein relation,

∆(1, 2, 3) = 1 − z(−z − z3)

= 1 + z2 + z4 (Conway polynomial)

= 1 + (t1/2 − t−1/2)2 + (t1/2 − t1/2)4

= t2 − 3t − 3t−1 + t−2 + 1

= · t2(t2 − 3t − 3t−1 + t−2 + 1

= t4 − 3t3 + 3t2 − 3t + 1 (Alexander polynomial)
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