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Abstract. In the tables of two component links up to nine cross-
ing there are 92 prime links. These different links take a variety
of forms and, inspired by a proof that Borromean circles are im-
possible, the questions are raised: Is there a possibility for the
components of links to be geometric shapes? How can we deter-
mine if a link can be formed by a shape? Is there a link invariant
we can use for this determination? These questions are answered
with proofs along with a tabulation of the link invariants; Conway
polynomial, linking number, and enhanced linking number, in the
following report on “Using Link Invariants to Determine Shapes
for Links”.

1. An Introduction to Links

By definition, a link is a set of knotted loops all tangled together.
Two links are equivalent if we can deform the one link to the other link
without ever having any one of the loops intersect itself or any of the
other loops in the process [1].We tabulate links by using projections
that minimize the number of crossings. Some basic links are shown
below.

Notice how each of these links has two loops, or components. Al-
though links can have any finite number of components, we will focus
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on links of two and three components. A famous 3-link is the Bor-
romean Rings (fig. 1). This link has the Brunnian property: if any one
component is removed, the entire link falls apart.

Figure 1. The Borromean Rings

The linking number measures how linked up two components are.
We say that the linking number is a link invariant because it remains
unchanged no matter what projection is representing the link. We can
compute the linking number using the following algorithm[1]:

1. Orient the two components of the link. We do this by choosing a
direction to travel around each component.

2. For each crossing between the two components determine a cross-
ing sign of “+1” or “-1” (fig. 2). This is decided by rotating
the understrand so that the arrows match. If the understrand is
rotated clockwise, the crossing is a “+1”. Similarly, if the under-
strand is rotated counterclockwise, the crossing is a “-1”. Note:
Use only crossings between the two components, not self crossings
of one component with itself.

3. Sum the crossing signs and take the absolute value of this result.
Then divide this number by 2. We now have the linking number!

Figure 2. Crossing Signs
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Figure 3. Determining the Linking Number

2. Enhanced Linking Number - A New Invariant

Traditionally, knot theory has focused on the study of knot or link
invariants. In most cases, a knot or link invariant is simply a func-
tion that assigns to each knot or link an integer. Recently there has
been a shift in knot theory from studying knot invariants themselves to
examining how the invariants change as the knot or link is changed.[1]

In 2003, C. Livingston introduced a new invariant called the en-
hanced linking number [6] in an article called “Enhanced Linking Num-
bers”, although the idea behind this new invariant was first seen in
an article by Livingston and Paul Kirk called “Vassiliev invariants of
two component links and the Casson-Walker invariant”. The enhanced
linking number is based on a skein relation. This relation was con-
tributed in 1969 by John Conway as a way to calculate the Alexander
polynomial. This is an equation that relates the polynomial of a link to
the polynomial of links obtained by changing the crossings in a projec-
tion of the original link [1]. The notion of the enhanced linking number,
λ, is based on a crossing change formula for λ as follows:

The advantage to using this idea of a crossing change formula for
enhanced linking numbers is that to apply λ to both computational
and theoretical problems in link theory, one only needs to know the
crossing change formula satisfied by λ – its precise value need not be
known.[6]

In order to understand this notation, some explanations followed
by an example would be helpful. The first notation to introduce is the
idea of left-handed crossings and right-handed crossings (fig. 4). Notice
that in the left-handed crossing, in order for the arrows to align, the
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Figure 4. Left- and right-handed crossings

understrand must be rotated counterclockwise. Similarly in the right-
handed crossing, the understrand must be rotated clockwise. Also note
the single dot toward the bottom of each arrow. This represents the
idea that the crossing is a “self-crossing” on one component.

Figure 5. Notation Explanation (Whitehead Link)

The process of replacing

is sometimes called smoothing the link at the crossing. With the no-
tation explained, an illustration of the crossing change formula for λ is
helpful.

Notice, the second diagram (see fig. 6) in this difference is the unlink.
Hence, since the value of λ on the unlink and the Whitehead link are
different, the Whitehead link can not be deformed into the unlink.
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Figure 6. Crossing change formula for λ

2.1. Defining λ using the Conway Polynomial. The definition of
λ depends on the use of knot polynomials, in particular, the Conway
polynomial. The definition of λ for two-component links is defined
in terms of the Conway polynomial, so in order to understand the
definition, we discuss basic properties of the Conway polynomial.

The individual coefficients of the Conway polynomial are link invari-
ants in their own right. These coefficients, viewed as invariants ci(L)
(i ≥ 0) for a link L, are defined by the expansion:

C(L)(z) =
∑

i

ci(L)zi

Notice that smoothing a crossing changes the number of components
of a link by one and that multiplication by z switches odd and even
polynomials. It follows from induction that a link with an even number
of components has an odd Conway polynomial and vice versa.

In order to tabulate the link invariants, the linking number and the
enhanced linking number, we will use the following theorem and defi-
nition from [6].

Theorem 1 (Theorem 8.4 of [6]). For a two-component link L, c1(L) =
lk(L).
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Definition 2 (Definition 8.6 of [6]). For a two-component link L =
(K, J), define λ(L) = c3(L) − c1(L)(c2(K) + c2(J))

3. Guide to Tabulation of Links and Link Invariants

The table of link invariants at the end of this paper shows the Conway
polynomial, linking number, and enhanced linking number for all prime
links up to nine crossings. It also shows these invariants for the mirror
images of these links, which is indicated by an asterisk. Those links
without mirror images are determined to be amphicheiral, i.e., that
the mirror image of the link can be deformed to equal the link. This
table uses Conway polynomials and oriented projections of links from
Doll and Hostes, “A Tabulation of Oriented Links” [7].

4. Using Shapes for Two Component Links

In 1991, Lindstrom and Zetterstrom proved that Borromean Circles
are impossible [2]. This raises the questions, “Are circles possible for
different links?”; “What shapes are possible for different links?” and
“Is there an invariant we can use to determine which shapes are possible
for each link?”

Understanding circles for links with two components is not difficult.
We know that circles in three space project into a plane in three ways[3];
as a line, a circle, or an ellipse. This means that two linked circles
project into a combination of a pair of these three possibilities. Notice
that the maximum intersections (in the plane) of two unique lines is one
point; the maximum intersections of a line and a circle, a line and an
ellipse, or two circles is two; and the maximum intersections of a circle
and an ellipse or two ellipses is four. This means two linked circles
can be projected into two space with a maximum of four crossings. In
the tables, there are only three links with four or fewer crossings; the
unlink, the Hopf link, and Solomon’s link. In addition to these prime
links found in the tables, there are a few non-prime links with four or
fewer crossings. Since we know that these non-prime links must contain
at least one component that is a knot, and the unknot is the only knot
that can be contained in a plane ([4] Corollary 4A), these non-prime
links of four or fewer crossings can not be formed with circles or any
other planar geometric shape. Looking at the unlink and Hopf link it is
apparent that circles can be used. Solomon’s link, on the other hand,
is a different story.

Theorem 3. Solomon’s link can not be made with two circles.

Proof: (By contradiction) Suppose we have circles C1 and C2 forming
Solomon’s link. Since C1 is a circle, it lies in a plane. We now have
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C2 above the plane starting at point A and following C2 in a clockwise
manner C2 goes below the plane, then above the plane again, then
below the plane again, and back to point A above the plane. This means
that circle C2 meets the plane at least 4 times, which is impossible since
the circle does not belong to that plane. Therefore Solomon’s link can
not be made with two circles.

Notice that the basis of this proof is the idea that C2 can not go
above, then below, then above, then below the plane. This gives us the
idea of alternating crossings. We will say that C2 has four alternating
crossings with C1. The argument above also applies to any planar shape
with the property that it crosses no plane beside its own 4 times. We
will call such a shape a convex figure. For example, convex polygons,
ellipses, and circles are all convex figures since they can intersect a
(distinct) plane in at most 2 points.

Lemma 4. If every projection of a link has 4 alternating crossings,
then it is impossible to form that link with convex figures.

A this point it would be convenient to be able to distinguish whether
or not it is possible to form certain links with convex figures using a
link invariant, and in fact, we can.

Theorem 5. If a link has two components whose linking number is
greater than or equal to 2, then convex figures can not be used to form
the link.

Proof: By the lemma above, we need to show that if two components
C1, C2 have a linking number, lk(C1 ∪ C2), of 2 or greater, then every
projection of the link has 4 alternating crossings. We are going to prove
this using contradiction.

Assume the lk(C1 ∪ C2) ≥ 2 and the link has a projection with less
than 4 alternating crossings. Since the link’s projection has less than 4
alternating crossings, it must have either 2 or 0 alternating crossings.
An odd number of alternate crossings can not occur:
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Assume the projection has 3 alternating crossings, C1 is a fixed cir-
cle, and C2 is an intertwining component producing 3 alternating cross-
ings.(i.e., C2 is split into 3 pieces by C1’s plane.)

Notice that if you start at the arrow on C2 , we get the three alter-
nating crossings, below-above-below. But the component, C2, has to
start either above or below and finish back at the same result, either
above or below. This means C2, only has 2 alternating pieces, below-
above. In the case of 0 alternate crossings, C2 is completely above or
below C1 and the linking number is zero.

Assume then that the projection has 2 alternating crossings. In this
case, C2 is above then below. Schematically, we will represent C2 as
being above C1 in the right semicircle and below C1 at the left. There
are four cases to consider depending on whether the top and bottom
points, A and B, are inside or outside C1 .

Figure 7. Two alternating crossings

If both are inside, then traveling from A to B on right semicircle
of C2, one crosses over C1 an even number of times, half going out of
C1 , half coming back in. Outward and inward crossings have different
signs, so the sum of these crossings is zero. Similarly, the sum of the
crossing signs on the left semicircle of C2 is 0. So, the linking number
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is 0. If A and B are both outside, again the linking number is 0. And if
one of A or B is inside the circle and the other is out, then the linking
number is 1.

Notice that in all cases, the linking number is either 0 or 1. But this
is a contradiction. Therefore, if a link has lk(C1 ∪ C2) ≥ 2, then the
link can not be made with convex figures.

Corollary 6. Links 42
1, 62

1, 62
2, 62

3, 72
5, 72

7, 82
1, 82

2, 82
3, 82

4, 82
5, 82

6, 82
9,

82
11, 82

14, 82
16, 92

1, 92
2, 92

6, 92
7, 92

14, 92
16, 92

17, 92
20, 92

22, 92
23, 92

24, 92
26, 92

28, 92
29,

92
30, 92

38, 92
40, 92

43, 92
45, 92

48, 92
49, 92

51, 92
53, 92

57, 92
58, 92

59, 92
60, 92

61 can not
be formed by convex figures.

Using Rolfsen’s Corollary, links 72
4, 72

8, 82
10, 82

12, 82
15, 92

13, 92
15, 92

18, 92
19,

92
21, 92

25, 92
27, 92

31, 92
33, 92

36, 92
39, 92

44, 92
46, 92

47, 92
50, 92

52, 92
55, 92

56 also can not
be formed by planar figures. Thus we’ve eliminated all but 23 links.

5. Using Shapes for Three Component Links

As previously mentioned, in 1991, Lindstrom and Zetterstrom proved
that Borromean circles are impossible[2]. This leads to the idea of using
different shapes for the Borromean rings.

Theorem 7. Equilateral Borromean Triangles are possible.

Proof: Consider ∆ABC in a three dimensional coordinate system with
vertices A(0, 0, 0), B(5, 0, 0), and C(2.5, 4.33, 0); ∆DEF with vertices
D(1.25,−.72, .5), E(3.75, 3.61, .5), and F (2.4, 1.44,−3.83); and ∆GHI
with vertices G(2.5, 1.44, 1), H(2.5, 4.33,−2.54), and I(5, 0,−2.54). Note:
We are using approximate values for simpler calculations. We want to
show that line segments AB and BC intersect the plane DEF within
∆DEF , line segments DE and EF intersect the plane GHI within
∆GHI, and line segments GH and GI intersect the plane ABC within
∆ABC. This will show that no pair of triangles is linked, but the three
are linked (the definition of Borromean rings).

The intersection points are as follows:
segment AB ∩ ∆DEF = (1.87, 0, 0)
segment BC ∩ ∆DEF = (3.44, 2.7, 0)
segment DE ∩ ∆GHI = (2.62, 1.65, 0.5)
segment EF ∩ ∆GHI = (2.99, 1.65, 0.5)
segment GH ∩ ∆ABC = (2.5, 2.26, 0)
segment GI ∩ ∆ABC = (3.21, 1.03, 0)
We can now verify that the points of intersection are contained within

the triangles by projecting each triangle into a plane and showing the
points lie within the triangles. We will project ∆ABC and ∆GHI into
the xy plane and ∆DEF into the yz plane.
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Figure 8. Borromean Triangles

Therefore, Equilateral Borromean Triangles are possible.
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Now, looking at constructing 6 crossing three links with circles, we
know that link 63

2 is impossible (Borromean rings) and that link 63
3 is

possible, as is easily verified with a physical model.

Figure 9. Link 63
3

But what about link 63
1?

Theorem 8. The link 63
1 can not be constructed with circles.

Figure 10. Link 63
1

Proof: (contradiction) Assume link 63
1 can be constructed with circles.

Rotate C3 lifting its top out of the page and dropping its bottom, so
that it will meet C1 in two points in its new position C ′

3. Observe that
C ′

3 will not meet C2 since we twist it away from C2. There are now
two cases: either C1 and C ′

3 are in the same plane or they are not. We
now basically follow the same proof Lindstrom and Zetterstrom used
to prove Borromean circles are impossible[2].
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(Case 1) If they are in the same plane, we follow C2 in a clockwise
direction, starting at “12 o’clock”. We are first above the plane, then
below, then above, then below, then back to the start. This means
that C2 meets the plane at least 4 times, which is impossible.

(Case 2) If C1 and C ′
3 do not lie in a plane, then we want to show

they will lie in a sphere. Let P , Q be the points in which C1 and C ′
3

meet. Let R be the midpoint of segment PQ. Let S1 and S2 be the
centers of the circles C1 and C ′

3, respectively. The plane containing R,
S1, and S2 is orthogonal to the line PQ. Let li be the normal to the
plane of Ci through Si (i = 1, 2). The line li is orthogonal to the line
PQ and contains the point Si in the plane. This implies that li lies in
the plane. Since l1 and l2 are not parallel lines they will meet in a point
T . The distance between T and C1 ∩C ′

3 is a constant r. Therefore, C1

and C ′
3 belong to a sphere with center T and radius r. We now have C2

going in and out of this sphere 4 times, which is impossible. Therefore
the link 63

1 is impossible to form with circles.
In an article by Cromwell, Beltrami, and Rampichini [5], they give

ten interlaced patterns that can be formed by three circles. Figure 11
shows these ten geometrically distinct patterns that can be derived by
choosing the crossings in different ways. In this case, the patterns are
considered up to symmetry: 3-fold rotation, reflection, and reflection
in the plane of the pattern [5]. This last symmetry operation means
that the sense of all the crossings is switched.

Figure 11. Links derived from Borromean Rings

Considered from a topological viewpoint, these ten patterns have
only five distinct link types: the Borromean rings (a), the (3, 3)-torus
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link (e and f), a three component chain (g, h, and j), and Hopf link with
a split component (b, c, and d), and the 3-component trivial link (i)
[5]. Looking at these patterns we know that a three component chain,
a Hopf link with a split component, and a 3-component trivial link can
be formed with circles. We also know that the Borromean rings can
not be formed with circles. As for the (3, 3) torus links, pattern (e) is
link 63

3 so we know that it can be formed with circles. A physical model
of pattern (f) can be made and it too can be formed with circles.

6. Table of Link Invariants of Two-Component Links

L Conway lk(L) λ(L) L Conway lk(L) λ(L)

02
1 0 0 0 22

1 z 1 0
42

1 2z 2 0 42
1∗ 2z + z3 2 1

52
1 z3 0 1 62

1 3z + 4z3 + z5 3 4
62

1∗ 3z 3 0 62
2 3z + 2z3 3 2

62
3 2z + 2z3 2 2 62

3∗ −2z + z3 −2 1
72

1 −z + 2z3 + z5 −1 2 72
1∗ z + 2z3 1 2

72
2 z − 2z3 1 −2 72

2∗ z + 2z3 + z5 1 2
72

3 −2z3 0 −2 72
4 2z3 + z5 0 2

72
5 2z + 3z3 2 1 72

5∗ 2z + 2z3 + z5 2 0
72

6 −z3 − z5 0 1 72
7 2z + z3 2 1

72
7∗ 2z + 4z3 + z5 2 2 72

8 z3 0 1
82

1 4z + 10z3 + 6z5 + z7 4 10 82
1∗ 4z 4 0

82
2 4z + 7z3 + 2z5 4 7 82

2∗ 4z + 3z3 4 3
82

3 3z + 6z3 + 2z5 3 6 82
3∗ −3z + 2z3 −3 2

82
4 4z + 4z3 4 4 82

4∗ 4z + 6z3 + 2z5 4 6
82

5 3z + 4z3 3 4 82
5∗ −3z + z5 −3 0

82
6 2z + 3z3 2 3 82

6∗ −2z + 2z3 −2 2
82

7 −z + z5 −1 0 82
8 z + z5 1 0

82
9 2z − 3z3 2 −1 82

9∗ 2z − z5 2 2
82

10 −z5 0 0 82
11 2z + 5z3 + 2z5 2 3

82
11∗ −2z + z5 −2 2 82

12 −z5 0 0
82

13 −z3 + z5 0 −1 82
14 2z + 5z3 2 7

82
14∗ 2z + z5 2 −2 82

15 z3 0 1
82

16 2z − z3 2 1 82
16∗ 2z − 2z3 − z5 2 0

92
1 −2z + 2z3 + 4z5 + z7 −2 2 92

1∗ 2z + 3z3 2 3
92

2 2z + 4z3 + 4z5 + z7 2 4 92
2∗ −2z + 3z3 −2 3

92
3 z − 4z3 − 2z5 1 −4 92

3∗ −z − 4z3 −1 −4
92

4 −5z3 − 2z5 0 −5 92
5 4z3 + 4z5 + z7 0 4
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L Conway lk(L) λ(L) L Conway lk(L) λ(L)

92
5∗ −4z3 0 −4 92

6 2z − 3z3 − 2z5 2 −3
92

6∗ 2z + 4z3 + 2z5 2 4 92
7 −2z + 2z3 + 2z5 −2 2

92
7∗ 2z + 3z3 + 2z5 2 3 92

8 −z − 4z3 − 2z5 −1 −4
92

8∗ z − 4z3 1 −4 92
9 −3z3 − 2z5 0 −3

92
10 −3z3 0 −3 92

11 z − 2z3 − 2z5 1 −2
92

11∗ −z − 2z3 + z5 −1 −2 92
12 z + 2z3 + 2z5 1 2

92
12∗ −z + 2z3 − z5 −1 2 92

13 3z3 + 4z5 + z7 0 3
92

14 2z + 8z3 + 3z5 2 10 92
14∗ 2z + 5z3 + 4z5 + z7 2 7

92
15 3z3 + 2z5 0 3 92

16 2z + 6z3 2 8
92

16∗ 2z + 3z3 + 2z5 2 5 92
17 2z + 5z3 2 7

92
17∗ 2z + 4z3 + 2z5 2 6 92

18 2z3 + 2z5 0 2
92

19 z − 3z3 − 4z5 − z7 1 −4 92
19∗ z + 5z3 + 2z5 1 4

92
20 3z + 5z3 + 4z5 + z7 3 2 92

20∗ 3z + 5z3 3 2
92

21 z − 3z3 − 2z5 1 −4 92
21∗ z + 5z3 + 4z5 + z7 1 4

92
22 3z + 3z3 + 2z5 3 0 92

22∗ 3z + 7z3 + 3z5 3 4
92

23 2z + 5z3 + 4z5 + z7 2 5 92
23∗ 2z − 4z3 2 −4

92
24 −3z + 2z3 − 1z5 −3 2 92

24∗ 3z + 6z3 + 3z5 3 6
92

25 −2z3 + z5 0 −2 92
26 2z − z3 − 2z5 2 1

92
26∗ −2z + 2z3 − z5 −2 0 92

27 −3z3 − 2z5 0 −3
92

28 2z + 3z3 + 2z5 2 1 92
28∗ −2z − 2z3 + z5 −2 0

92
29 2z + 7z3 + 3z5 2 9 92

29∗ 2z + 6z3 + 4z5 + z7 2 8
92

30 2z + 3z3 − z5 2 5 92
30∗ 2z + 6z3 + 3z5 2 8

92
31 −z3 − 3z5 − z7 0 −2 92

32 −z3 − 2z5 0 −1
92

33 −z3 − 2z5 0 −1 92
34 z − 2z3 − 3z5 − z7 1 −2

92
34∗ z + 2z3 + 2z5 1 2 92

35 z + 2z3 + 3z5 + z7 1 2
92

35∗ −z + 2z3 + 2z5 −1 2 92
36 −2z3 − 2z5 0 −2

92
37 −2z3 − 3z5 − z7 0 −2 92

38 2z + z3 + 2z5 2 1
92

38∗ 2z − 2z5 2 0 92
39 −z − 3z3 − 3z5 − z7 −1 −2

92
39∗ z − z3 − 2z5 1 −2 92

40 3z + 7z3 3 4
92

40∗ 3z + 3z3 + 3z5 + z7 3 0 92
41 3z3 + 3z5 + z7 0 3

92
41∗ 3z3 + z5 0 3 92

42 z − 2z5 − z7 1 0
92

42∗ z + 2z5 1 0 92
43 2z + 4z3 + z5 2 6

92
43∗ 2z + 9z3 + 6z5 + z7 2 11 92

44 −2z5 − z7 0 0
92

45 2z + 7z3 + 2z5 2 9 92
46 −2z3 0 −2

92
47 −z3 0 −1 92

48 2z + 3z3 2 5
92

48∗ 2z + 6z3 + 2z5 2 8 92
49 3z + 9z3 + 6z5 + z7 3 6

92
49∗ 3z + z3 3 −2 92

50 z + 3z3 + z5 1 2
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L Conway lk(L) λ(L) L Conway lk(L) λ(L)

92
50∗ z − z3 1 −2 92

51 3z + 3z3 + z5 3 0
92

51∗ 3z + 7z3 + 2z5 3 4 92
52 z − z3 − z5 1 −2

92
52∗ z + 3z3 1 2 92

53 4z + 9z3 + 6z5 + z7 4 9
92

53∗ 4z + z3 4 1 92
54 −z + 2z3 −1 2

92
54∗ −z − 2z3 − z5 −1 −2 92

55 z3 + z5 0 1
92

56 −z3 − z5 0 −1 92
57 2z − z3 − z5 2 −1

92
57∗ 2z + 2z3 + z5 2 2 92

58 2z + z3 + z5 2 1
92

58∗ 2z − z5 2 0 92
59 2z + 5z3 + z5 2 7

92
59∗ 2z + 8z3 + 6z5 + z7 2 10 92

60 2z + 5z3 + z5 2 7
92

60∗ 2z + 4z3 + z5 2 6 92
61 4z + 5z3 + z5 4 5
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