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Abstract

Two Fox m-colorings of a knot or link K are said to be equivalent
if they differ only by a permutation of colors. The set of equivalence
classes of m-colorings under this relation is the set Cm(K) of Fox m-
coloring classes of K. We develop a combinatorical formula for |Cm(K)|
for any knot or link K that depends only on the m-nullity of K. As a
practical application, we determine the m-nullity, and therefore the value
of |Cm(P(p,q,r))|, for any any (p, q, r) pretzel link P(p,q,r).

1 Introduction

Tricolorability is a rather coarse knot invariant (it only divides the category
of knots into two types), but it nonetheless has useful applications; one simple
example is that tricolorability can be used to determine whether a link is non-
splittable. The set of integers m for which a knot is m-colorable (the “coloring
number set”) is a more powerful invariant. To get an even stronger invariant
we can consider for each m the number of different ways that a knot can be
m-colored; this invariant is used in [1] to distinguish knots with identical HOM-
FLYPT polynomials. The current literature (for example, [3]) often considers
the total number of m-colorings, including trivial m-colorings and m-colorings
that differ only by a permutation of colors. In this paper we instead consider
the number of nontrivial m-colorings up to permuation; that is, we consider the
number of m-coloring classes Cm(K) of a knot K (see Section 3). Although
m-colorability is defined for any integer m > 2, in this paper we will focus only
on the cases where m is prime.

In Section 2 we give a quick overview of Fox m-colorability, and discuss
the number of ways that a knot can be m-colored. In Section 3 we introduce
the notion of m-coloring classes, that is, m-colorings that differ by more than
just permutations of the colors, and develop a combinatorical formula for the
number of such colorings based only on the m-nullity of the knot. In Section 4
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we focus our attention on (p, q, r) pretzel knots, using determinants and m-
nullity to describe the number of m-coloring classes for any (p, q, r) pretzel knot
and prime number m. Specifically, we show that for any (p, q, r) pretzel knot K,
if m divides ∆, then the m-nullity of K is either 2 or 3, depending on whether
or not any of p, q, and r are relatively prime to m. This will mean that every
m-colorable (p, q, r) pretzel knot must have either one or four m-coloring classes.
A similar result (but counting all m-colorings) can be found in [3].

2 Definitions and Background

We begin by presenting some basic definitions and results concerning colorability
of knots. (See also [4].) Our definition of m-colorability is Fox’s original notion
of m-colorability. Throughout this paper, the only m-colorings we will consider
are those where m is prime.

Definition 1 A knot K is m-colorable if each strand in a projection of K can
be assigned a number (called a “color”) from the set {0, 1, · · · , m−1} so that (i)
at least two colors are used, and (ii) at each crossing, if x and y are the colors of
the understrands and z is the color of the overstrand, then x+y−2z ≡ 0 mod m.

Given a knot projection with a labeling of its crossings and strands, the
associated crossing matrix C is the matrix whose (i, j) entry is 1 if strand j is
an understrand at crossing i, and −2 if strand j is an overstrand at crossing i.
A matrix obtained by removing one row and one column from a crossing matrix
will be called a minor crossing matrix. Every minor crossing matrix of a knot
K has the same determinant, which we denote det(K). The system of equations
represented by the minor crossing matrix of a knot K has a solution mod m if
and only if det(K) ≡ 0 mod m. Therefore:

Theorem 1 Suppose m is prime. A knot K is m-colorable if and only if m

divides det(K).

Each vector in the mod m nullspace of the crossing matrix C corresponds to
an m-coloring of K. The m-nullity of a knot K is the dimension of the nullspace
of the crossing matrix of K. (Note: Some authors use the mod m nullity of the
minor crossing matrix rather than the mod m nullity of the full crossing matrix.)
We can see immediately that if a knot has m-nullity 1, it is not m-colorable,
because in this case, the only m-colorings are the trivial colorings, that is, those
represented by multiples of the vector (1, 1, . . . , 1, 1).

The m-nullity of a knot K determines the number of m-colorings of K,
regardless of projection or number of strands. Suppose K is a knot with m-
nullity n > 2. Then the system of equations describing the m-colorability
conditions at each crossing of K will have n free variables. This means that there
is a set of n strands of K that can be assigned any color in 0, 1, 2, ..., m− 1 (as
long as they are not all assigned the same color). We call this a set of significant

2



strands for that projection of K. The colors for the remaining strands of the
projection will be determined by the colors of the significant strands. Theorem 2
describes a formula for the number of m-colorings of a knot with m-nullity n

(see [4]).

Theorem 2 A knot with m-nullity n has mn −m nontrivial m-colorings.

Proof: Let K be a knot with m-nullity n. This implies that K has n

significant strands. Because each strand can be assigned any of m different
colors, there exist mn different ways to assign colors to the strands such that
the condition x + y− 2z ≡ 0 mod m is satisfied. However, this number includes
all the trivial m-colorings, that is, the m-colorings in which the entire knot
is colored with only one color. Because an m-coloring must use at least two
colors, we subtract the m trivial colorings, leaving us with mn −m nontrivial
m-colorings. QED

Example 1 For example, the trefoil knot has 3-nullity 2, and thus 32 − 3 = 6
different 3-colorings. In this example, any two strands can be chosen as the
significant strands. The six 3-colorings in Figure 1 correspond to the six differ-
ent ways that we can assign colors from {0, 1, 2} to the two significant strands
(without both strands being the same color).

Figure 1: The six 3-colorings of the trefoil knot.

3 m-coloring classes

Notice that the six 3-colorings of the trefoil knot in Figure 1 are all permutations
of each other. We will now examine whether a knot can be colored in two or
more ways that are not simply permutations of each other.

Let Gm(K) be the set of all possible nontrivial m-colorings for a knot K.
We wish to count the number of m-colorings in Gm(K) that differ by more than
just a permutation of colors. We can think of m-colorings of K as maps from
the set of strands of K to Z

m, and consider two m-colorings to be equivalent
if their maps differ by a permuation; this partitions Gm(K) into equivalence
classes of m-colorings. We will denote the set of these m-coloring classes of K

by Cm(K). Two m-colorings are said to be equivalent if they are in the same
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m-coloring class, and fundamentally different if they are in different m-coloring
classes.

Example 2 Main Theorem 1 will guarantee that |C3(935)| = 4. Representatives
of the four 3-coloring classes of 935 are shown in Figure 2. Note that none of
these 3-colorings is a permutation of another.

Figure 2: The four 3-coloring classes of the 935 knot.

To find the number of m-coloring classes of a knot, we will separate the
possible m-colorings into “types,” and then count how many m-coloring classes
are possible of each “type.” A knot with m-nullity n will have n significant
strands that can each be colored with any number 0, 1, 2, . . . , m − 1 (as long
as at least two colors are used). A choice of these m-colorings corresponds to
a coloring vector (c1, c2, . . . , cn). For example, a knot with 5-nullity 4 could
have coloring vectors (0, 2, 1, 4), (1, 1, 1, 4), or (3, 3, 0, 3). We will say that two
coloring vectors (for m-nullity n) are of the same type if they are the same up
to permutations of the order and choice of colors. For example, (1, 1, 1, 4) and
(3, 3, 0, 3) are of the same type, but (0, 2, 1, 4) and (1, 1, 1, 4) are not.

We can classify a type of coloring vector using a type vector ~d = 〈d1, d2, . . . , dn〉
that records the sizes of the sets of strands that are similarly colored. Each di in
the type vector describes a number of strands that are assigned the same color.
For example, the coloring vector (3, 3, 0, 3) is made up of a set of 3 strands of
the same color (3), and a set of 1 strand of a different color (0). Therefore we
say (3, 3, 0, 3) is of type 〈3, 1, 0, 0〉. (We append zeroes so that the type vector
has length n = 4.)

Definition 2 Suppose K is a knot with m-nullity n. A type vector for K is a
vector ~d = 〈d1, d2, . . . , dn〉 in Zn

+ satisfying the following three conditions:

i) di+1 ≤ di < n for 1 ≤ i ≤ n− 1;

ii)
∑n

k=1 di = n;

iii) At least n−m of the di are zero.

The set of all type vectors for m-nullity n is denoted Dn,m.

Part (i) of Definition 2 ensures that the entries di are decreasing (to avoid
repetition), and omits the type of m-coloring where all n of the significant
strands are assigned the same color (or the trivial coloring). We require that
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the entries di sum to n in part (ii) since the sum of the di will be the number of
significant strands. Part (iii) is only relevant if n > m. The number of non-zero

entries in ~d represents the number of colors that are used. An m-coloring can
use at most m colors, so if n > m then at least m− n of the di must be zero.

Our formula for the number of m-colorings of a knot with m-nullity n will
also require the following definition.

Definition 3 The k-count of a type vector ~d = 〈d1, d2, . . . , dn〉, denoted sk(~d),

is the number of entries of ~d which are equal to k: for 0 ≤ k < n,

sk(~d) :=
∣

∣{di | di = k, 1 ≤ i ≤ n}
∣

∣ .

Note that we will never need to consider sn(~d), because any coloring whose

type has sn(~d) 6= 0 will be the trivial coloring. In this notation, part (iii) of
Definition 2 says that s0 ≤ m − n. A few examples: The type vector 〈2, 1, 0〉
has s0 = 1, s1 = 1, and s2 = 1. The type vector 〈1, 1, 1〉 has s0 = 0, s1 = 3,
and s2 = 0. A type vector with s1 = n corresponds to m-colorings where all
the significant strands are colored differently.

We are finally in a position to describe our first main result, a combinatorical
formula for the number of m-coloring classes of a knot with m-nullity n. Note
that every knot with m-nullity n will have the same list of type vectors, with
the same k-counts. Therefore the formula in Main Theorem 1 depends only on
the prime number m and the m-nullity n of the knot.

Main Theorem 1 Suppose K is a knot with m-nullity n. Then K has |Cm(K)|
m-coloring classes, given by the formula:

|Cm(K)| =
∑

~d∈Dn,m

n!

(d1! d2! · · · dn!) (s1! s2! · · · sn!)

Before proving Main Theorem 1, let us consider an example.

Example 3 If K has 5-nullity 4, then Dn,m consists of four type vectors:
〈3, 1, 0, 0〉, 〈2, 2, 0, 0〉, 〈2, 1, 1, 0〉, and 〈1, 1, 1, 1〉. If we use these vectors (and
the corresponding k-counts) in the formula in Main Theorem 1, we obtain the
sum:

4!
(3! 1! 0! 0!)(1! 0! 1!) + 4!

(2! 2! 0! 0!)(0! 2! 0!) + 4!
(2! 1! 1! 0!)(2! 1! 0!) + 4!

(1! 1! 1! 1!)(4! 0! 0!) = 14.

Therefore, if K has 5-nullity 4, then |C5(K)| = 14. One knot with 5-nullity 4 is
the composition of three Figure-8 (or 41) knots, shown in Figure 3. Using the
four boldly marked strands as the set of significant strands, the 41#41#41 knot
can be colored 14 fundamentally different ways.

5



Figure 3: The nullity of 41#41#41 is 4, and |C5(41#41#41)| = 14.

In fact, any knot K with m-nullity 4 will have |Cm(K)| = 14, provided that
4 ≤ m. Table 1 lists the number of m-coloring classes of any knot with m-
nullity n provided that n ≤ m. If n > m, then K has more significant strands
than colors, which affects the number of possible m-coloring classes of K (for
example, see Table 2; notice that this table differes from Table 1 only when
n > 3).

m-nullity n |Cm(K)|
1 0
2 1
3 4
4 14
5 51
6 202

Table 1: |Cm(K)| given n ≤ m.

3-nullity n |C3(K)|
1 0
2 1
3 4
4 13
5 40
6 121

Table 2: |C3(K)| given 3-nullity n.

Proof: Suppose K is a knot with m-nullity n. Then K has n significant
strands, which we can label with (not necessarily distinct) colors a1, a2, . . . , an.
It is unimportant what specific color each strand is assigned; what matters is
how many different ways we can assign colors to the strands so that a given
type vector is satisfied. Before developing the general formula, we will focus on
a few specific examples.

For example, the type vector 〈3, 2, 1, 0, 0, 0〉 for a set of six significant strands
represents a color assignment where three strands are one color, two more
strands are another color, and the remaining strand is a third color. We will
now count the number of arrangements of the strands ai that satisfy this type
vector. We must first choose three out of the six strands to be assigned the
first color; there are

(

6
3

)

= 20 ways to do this. Similarly, there are
(

3
2

)

= 3
ways to choose two strands (from the remaining three) to be the second color.
Finally, there is only one strand left to be assigned the remaining color (

(

1
1

)

= 1
choices). Therefore, there are 20 · 3 · 1 = 60 strand arrangements satisfying the
type vector. For example, two of these 60 arrangements are:

(a1 = a2 = a3) 6= (a4 = a5) 6= (a6),

(a1 = a4 = a5) 6= (a2 = a6) 6= (a3).
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The counting method used above will overcount the number of arrangements
if there are two or more equal entries in the type vector. For example, consider
the type vector 〈2, 2, 1, 0, 0〉 for a set of five significant strands, and the following
two arrangements:

(a1 = a3) 6= (a2 = a5) 6= (a4);

(a2 = a5) 6= (a1 = a3) 6= (a4).

The counting method predicts that there will be
(

5
2

)(

3
2

)(

1
1

)

= 30 different ar-
rangements for this type vector. However, this counts the two arrangements
above differently, although they are obviously the same. Since there are two
sets of the same size in the arrangements for this type vector, we must divide
our result by 2; therefore there will be 15 different arrangements for the type
vector 〈2, 2, 1, 0, 0〉. If there are three sets of the same size, we must divide by
3 · 2; if there are s sets of the same size, we must divide by s!. We must divide
for every multiple set, so if we had type vector 〈2, 2, 1, 1, 1, 0, 0〉, we would have
to divide our result by 2! · 3!. Notice that the k-counts from Definition 3 are
exactly what we need to measure how many sets of the same size occur in any
type vector.

Applying this counting method to a general type vector ~d = 〈d1, d2, . . . , dn〉,
we see that there are at most

(

n

d1

)(

n− d1

d2

)(

n− d1 − d2

d3

)

· · ·

(

n− d1 − d2 − · · · − dn−1

dn

)

(1)

different arrangements. The expression in (1) may overcount the number of

arrangements, depending on the k-counts sk(~d). To make an accurate count of
the arrangements, we must divide the expression in (1) by the product of the

factorials of the k-counts sk = sk(~d):

1

s1! s2! s3! · · · sn−1!

(Note that if si(~d) = 1, then we divide by 1!, which does not change the ex-
presssion.)

To find the total possible number |Cm(K)| of m-coloring classes of K, we
must add together the number of arrangements corresponding to each type
vector. This process results in the following formula:

|Cm(K)| =
∑

~d∈Dn,m

(

∏

1≤i≤n, di 6=0

(

n−
∑i

j=1 dj−1

di

)

·
∏

1≤k<n

1

sk!

)

. (2)

It now only remains to simplify the equation in (2) and show it is equivlant
to the formula in Main Theorem 1. We begin by considering the part of (2)
that comes from expression 1. It is easy to show that:

∏

1≤i≤n di 6=0

(

n−
∑i

j=1 dj−1

di

)

=
n!

(d1!d2! · · ·dn!)(n− d1 − d2 − · · · − dn)!
.
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Since
∑n

k=1 di = n, the second factor in the denominator of the expression above
is (n− n)! = 0! = 1. Thus we have:

∏

1≤i≤n di 6=0

(

n−
∑i

j=1 dj−1

di

)

=
n!

d1!d2!d3! · · · dn!
.

Therefore, the equation in (2) can be written as:

|Cm(K)| =
∑

~d∈Dn,m

n!

(d1!d2!d3! · · · dn!)(s1!s2!s3! · · · sn)
.

QED
Given a type vector ~d, the corresponding term in the sum from Main Theo-

rem 1 counts the number of possible strand arrangements that satisfy the type
vector ~d. To count the total number of m-colorings, including those that differ
only by permutations, we must multiply each of the terms in the sum from Main
Theorem 1 by m!

(m−(n−s0))! , where s0 = s0(~d) is the 0-count for the type vector

~d. This means that the total number of m-colorings of a knot with m-nullity n

is given by the expression:

∑

~d∈Dn,m

(

m!

(m− (n− s0))!
·

n!

(d1!d2!d3! · · · dn!)(s1!s2!s3! · · · sn)

)

. (3)

It is interesting to note that this complicated expression is in fact equal to
mn −m, the formula from Theorem 2.

4 Pretzel Knots

As a practical application, we will now consider Main Theorem 1 in the context
of pretzel knots.

A twist is a part of a knot comprised of two strands twisted together mono-
tonically one or more times; for example, the knot in Figure 4 has three twists.
The top right strand is called the northeast strand, the bottom right is called
the southeast strand, and so on. A twist is positive if its northeast strand is an
overstrand; otherwise it is negative. An twist is odd if it has an odd number
of crossings; otherwise it is even. For any integers p, q, and r, the pretzel knot
P(p,q,r) is the knot or link composed of three twists of size p, q, and r joined
together such that each northeast strand connects to the adjacent northwest
strand, and each southeast strand connects to the adjacent southwest strand
(we consider the first and last twists to be adjacent). For example, the knot
P(5,4,7) in Figure 4 consists of three positive twists with 5, 4, and 7 crossings.

P(p,q,r) is a knot if at most one twist is even, a 2-component link if two twists
are even, and a 3-component link if all three twists are even. The results in this
paper apply to both pretzel knots and pretzel links, but from this point forward
we will refer to both pretzel knots and pretzel links simply as pretzel knots.
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Figure 4: A (5, 4, 7) pretzel knot.

Equations (4) and 5 describe basic properties of pretzel knots. Their proofs
are elementary and we do not include them here. For any integers p, q, and r

we have:

P(p,q,r) = P(p,r,q) = P(r,p,q) = P(r,q,p) = P(q,p,r) = P(q,r,p). (4)

P(p,q,r) = P(−p,−q,−r). (5)

These equations show that to prove a theorem for all (p, q, r) pretzel knots, it
suffices to prove two special cases: the case where p, q, and r are all positive,
and the case where exactly one of p, q, and r is negative. We will make use of
this fact when we prove Main Theorem 2.

If p, q, and r are all positive integers, then we will label the crossings of
P(p,q,r) as shown in Figure 5, and the strands as shown in Figure 6. If any
of the twists are negative, we require a different labeling. We will choose this
labeling so that the connecting strands are labeled the same way as in the all-
positive pretzel labeling in Figures 5 and 6. For example, a P(p,q,−r) pretzel
knot (where p, q, and r are positive) will be labeled as in Figures 7 and 8.

These choices of labelings result in particularly nice crossing matrices. The
matrix for a knot P(p,q,r) with all positive twists is shown in (6). (Note that
the crossing matrix, and all of its diagonal blocks, are square, and that each
unlabeled entry in the matrix is zero.)

1
2
...
p− 1
p

p + 1
p + 2
...
p + q − 1
p + q

p + q + 1
p + q + 2
...
p + q + r − 1
p + q + r



























































−2 1 1
1 −2 1

. . .

1 −2 1
1 −2 1

1 −2 1
1 −2 1

. . .

1 −2 1
1 −2 1

1 −2 1
1 −2 1

. . .

1 −2 1
1 1 −2



























































(6)

Similarly, if p, q, and r are positive, then the pretzel knot P(p,q,−r) has the
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Figure 5: Crossing labeling for a
positive-twist pretzel knot.

Figure 6: Strand labeling for a
positive-twist pretzel knot.

Figure 7: Crossing labeling for a
(p, q,−r) pretzel knot.

Figure 8: Strand labeling for a
(p, q,−r) pretzel knot.

general crossing matrix shown in (7).

1
2
3
...
p− 2
p− 1
p

p + 1
p + 2
p + 3
...
p + q − 2
p + q − 1
p + q

p + q + 1
p + q + 2
p + q + 3
...
p + q + r − 2
p + q + r − 1
p + q + r



















































































−2 1 1
1 −2 1

1 −2 1
. . .

1 −2 1
1 −2 1

1 −2 1
1 −2 1

1 −2 1
1 −2 1

. . .

1 −2 1
1 −2 1

1 −2 1
−2 1 1
1 −2 1

1 −2 1
. . .

1 −2 1
1 1 −2
−2 1 1



















































































(7)
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Regardless of the signs of p, q, and r, it is known (see [2], [3]) that

det(P(p,q,r)) = |pq + pr + qr|.

This can also be shown by row-reducing the matrices in (6) and (7). By Theo-
rem 1 this means that:

Theorem 3 For any integers p, q, and r, P(p,q,r) is m-colorable if and only if
m divides |pq + pr + qr|.

By calculating the m-nullity of P(p,q,r) and applying Main Theorem 1, we
will arrive at our second main theorem:

Main Theorem 2 Suppose p, q, and r are integers and m is a prime number
that divides |pq + pr + qr|.

i) If at least one of p, q, and r is relatively prime to m, then |Cm(P(p,q,r))| =
1.

ii) If none of p, q, and r are relatively prime to m, then |Cm(P(p,q,r))| = 4.

Proof: It suffices to show that the m-nullity of P(p,q,r) is 2 when at least
one of p, q, and r is relatively prime to m, and that otherwise the m-nullity
of P(p,q,r) is 3. In each of parts (i) and (ii) it suffices to consider two cases:
when all three twists are positive, and when two twists are positive and one is
negative (see Equations 4 and 5).

Case 1: Part (i) when all three twists are positive. Without loss of generality, we
can assume that q is relatively prime to m (see Equation 4). We will reduce the
crossing matrix C from (6) so that only zeroes appear below the lower diagonal.
We begin with the following sequence of row operations:

R1 −→ R1 +
∑p+q+r

i=2 Ri,

Rp+1 −→ Rp+1 −
∑p

i=2(i− 1)Ri,

Rp+q+1 −→ Rp+q+1 −
∑p+q

i=p+2(i− 1)Ri.

These row operations change the matrix C into the matrix shown in (8).

1
2
...

p− 1
p

p + 1
p + 2

...
p + q − 1

p + q

p + q + 1
p + q + 2

...
p + q + r − 1

p + q + r



























































0 0
1 −2 1

. . .

1 −2 1
1 −2 1

p −2 1 · · · · · · −(p− 1)
1 −2 1

. . .

1 −2 1
1 −2 1

q −2 1 · · · · · · −(q − 1)
1 −2 1

. . .

1 −2 1
1 1 −2



























































(8)
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It remains only to reduce row Rp+q+r. We begin by switching this row with
row Rp+1 (because there is a p above the 1 in column Cp):

Rp+q+r ←→ Rp+1.

The new row Rp+q+r can now be reduced as follows:

Rp+q+r −→ Rp+q+r −
∑p+q

i=p+1(i− 1)Ri,

Rp+q+1 −→ Rp+q+1 + Rp+q+r ,

Rp+q+r −→ q · Rp+q+r,

Rp+q+r −→ Rp+q+r + p ·Rp+q+1.

Note that multiplying by q is valid modulo m because we are assuming that q

and m are relatively prime. The final row is now:

(

0 · · · 0 0 · · · 0 −2(q + p) p + q 0 · · · 0 −pq p + q + pq
)

.

The remainder of the row reduces fairly easily using the row operation:

Rp+q+r −→ Rp+q+r +

p+q+r−1
∑

i=p+q+2

(i− p− q)(q + p)Ri.

We have now reduced the crossing matrix C to the reduced matrix R shown
in (9).

1
2
...

p− 1
p

p + 1
p + 2

...
p + q − 1

p + q

p + q + 1
p + q + 2

...
p + q + r − 1

p + q + r



























































0 0
1 −2 1

. . .

1 −2 1
1 −2 1

1 1 −2
1 −2 1

. . .

1 −2 1
1 −2 1

q −2 1 · · · · · · −(q − 1)
1 −2 1

. . .

1 −2 1
∆ ∆



























































(9)

Since m divides the determinant |∆| = |pq + pr + qr|, this matrix R, and thus
the matrix C, clearly has m-nullity 2.

Case 2: Part (i) when one twist is negative. Suppose p, q, and r are positive
integers, and let P(p,q,r) have labelings as in Figures 7 and 8 and crossing matrix
D as in (7). Again we can assume without loss of generality that q is relatively
prime to m. The row operations for reducing the crossing matrix D are similar
to the row operations for reducing the crossing matrix C in Case 1, and are as
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follows:

R1 −→ R1 +
∑p+q+r

i=2 Ri,

Rp+1 −→ Rp+1 −
∑p

i=2(i− 1)Ri,

Rp+q+1 ←→ Rp+q+2,

Rp+q+2 −→ Rp+q+2 + 2 · Rp+q+1,

Rp+q+1 −→ Rp+q+1 −
∑p+q

i=p+2(i− p− 1)Ri,

Rp+q+r −→ Rp+q+r + 2 ·Rp+q+r−1,

Rp+q+r−1 ←→ Rp+1,

Rp+q+r−1 −→ Rp+q+r−1 +−p ·Rp+1

∑p+q
i=p+2(i− p)Ri.

Rp+q+r−1 −→ Rp+q+r−1 + Rp+q+1,

Rp+q+r−1 −→ q · Rp+q+r−1,

Rp+q+r−1 −→ Rp+q+r−1 + p · Rp+q+1,

Rp+q+r−1 −→ Rp+q+r−1 +
∑p+q+r−2

i=p+q+3 (i− p− q − 1)(p + q)Ri,

Rp+q+r−1 ←→ Rp+q+r,

Rp+q+r −→ 2 ·Rp+q+r ,

Rp+q+r −→ Rp+q+r + (−pr − qr − pq + 2p + 2q) · Rp+q+r−q.

Note that since q and m are relatively prime in this case, the row operation
where we multiply row Rp+q+r−1 by q is valid modulo m. These row operations
result in the reduced matrix shown in (10), which clearly has m-nullity 2.

1
2
3
...

p− 2
p− 1

p

p + 1
p + 2
p + 3

...
p + q − 2
p + q − 1

p + q

p + q + 1
p + q + 2
p + q + 3

...
p + q + r − 2
p + q + r − 1

p + q + r



















































































0 0
1 −2 1

1 −2 1
. . .

1 −2 1
1 −2 1

1 −2 1
1 1 −2

1 −2 1
1 −2 1

. . .

1 −2 1
1 −2 1

1 −2 1
q 0 −2 1 · · · −(q − 1)

1 −3 2
1 −2 1

. . .

1 −2 1
2 −3 1
−∆ ∆



















































































(10)

Case 3: Part (ii) when all three twists are positive. Suppose p, q, and r are
positive integers and no twist in P(p,q,r) is relatively prime to m. During our
reduction of the crossing matrix C for P(p,q,r) in Case 1, we multiplied a row by
q. Since m divides q (and in fact, also divides p and r), this is not valid modulo
m. The row operations before this step result in the partially reduced matrix
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shown in (11).

1
2
...

p− 1
p

p + 1
p + 2

...
p + q − 1

p + q

p + q + 1
p + q + 2

...
p + q + r − 1

p + q + r



























































0 0 1
1 −2 1

. . .

1 −2 1
1 −2 1

1 · · · 1 −2
1 −2 1

. . .

1 −2 1
1 −2 1

0 −2 1 · · · · · · 1
1 −2 1

. . .

1 −2 1
0 −2 1 · · · 0 1



























































(11)

Notice that the rows Rp+q+1 and Rp+q+r are the same. The following operation
is enough to finish reducing the matrix:

Rp+q+r −→ Rp+q+r + (−Rp+q+1).

We now have a final row of zeros, and a matrix with m-nullity 3.

Case 4: Part (ii) where one twist is negative. The proof in this case is similar to
the proof of Case 3, with the crossing matrix and row reductions used in Case
2. QED

Example 4 P(3,15,5) has determinant 135 = 33 · 5, and thus is m-colorable for
m = 3 or m = 5. Because m = 3 is relatively prime to r = 5, P(3,15,5) has
3-nullity 2, and therefore only one 3-coloring class (Figure 9). Similarly, since
m = 5 is relatively prime to p = 3, P(3,15,5) has 5-nullity 2, and only one
5-coloring class (Figure 10).

Figure 9: The 3-coloring of P(3,15,5). Figure 10: The 5-coloring of P(3,15,5).

Example 5 P(3,6,9) has determinant 99 = 32 · 11, and thus is thus both 3-
colorable and 11-colorable. Because 3 divides all three twists, P(3,6,9) has 3-
nullity 3, and therefore four fundamentally different 3-colorings (shown in Fig-
ure 11). On the other hand, since 11 is relatively prime to at least one twist (in
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fact, to all of the twists), the 11-nullity of P(3,6,9) is 2. Therefore, P(3,6,9) has
only one fundamental 11-coloring (shown in Figure 12).

Figure 11: Representatives of the four 3-coloring classes of P(3,6,9).

    Key
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Figure 12: P(3,6,9) has one 11-coloring class.
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