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1 Introduction

A Sudoku board is a 9 × 9 Latin square with an additional block condition.
Specifically, the 81 cells of a Sudoku board are filled with the integers 1–9 in
such a way that no row, column, or designated 3 × 3 block contains repeated
entries. We will refer to these rows, columns and blocks as regions. A Sudoku
puzzle is a subset of a Sudoku board that uniquely determines the rest of the
board. For example the Sudoku puzzle below left is one of the many puzzles
whose unique solution is the Sudoku board below right.
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Figure 1: Sudoku puzzle and board

The number of possible Sudoku boards is larger than the number of stars
thought to be in the universe. Felgenhauer and Jarvis [7] showed that there
are 6,670,903,752,021,072,936,960 different Sudoku boards. Even if we wanted
to count only essentially different, nonequivalent Sudoku boards, Russell and
Jarvis [13] showed that this number is also rather large, namely 5,472,730,538.
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For the purposes of illustration, in this paper it will be convenient for us to
work with a simpler version of Sudoku called Shidoku. A Shidoku board is a
4 × 4 Latin square whose regions (rows, columns, and designated 2 × 2 blocks)
each contain the integers 1–4 exactly once. In this smaller universe it is not
that difficult to show that there are 288 different Shidoku boards [17]. One of
the things this paper will discuss is the use of Gröbner bases as an alternate
method of counting Sudoku and Shidoku boards.

A Shidoku puzzle is a subset of a Shidoku board that uniquely determines
the rest of the board. For example, below left is a Shidoku puzzle whose unique
solution is the Shidoku board in the center. The Shidoku board below right
shows the variable-assignments we will use for the cells of a Shidoku board
throughout this paper.
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Figure 2: Shidoku puzzle, board, and variables

Many different Sudoku solving strategies have been developed and numerous
computer programs have been written using these strategies to solve, generate,
and rate the difficulty level of Sudoku puzzles. The Sudopedia website [16] is
an excellent resource for all things Sudoku, and includes dozens of strategies of
various levels of sophistication. However, in this paper we are not interested in
solution techniques, but rather in the inherent structure of Shidoku and Sudoku
puzzles and boards.

In what follows we will develop three different ways of representing the con-
straints of Shidoku with a system of polynomial equations. In one case we will
explicitly show how a Gröbner basis can be used to obtain a more meaningful
representation of the constraints. The Gröbner basis representation can be used
to find puzzle solutions or count numbers of boards.

2 Polynomial Representations of Shidoku

There are various ways that we can represent the constraints in a Shidoku board
as a system of polynomials. We’ll start with a simple but new representation
based on the regions of the board. Think of the 16 cells on a Shidoku board as
16 variables that can each take on only the values 1, 2, 3, or 4. For any of these
variables w we can encode this fact with a polynomial equation of the form

(w − 1)(w − 2)(w − 3)(w − 4) = 0. (1)

Now suppose that {w, x, y, z} is a set of four cells that make up a region of the
Shidoku board, that is, a row, column, or 2 × 2 block. We need to assign four
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different values to these four cells. It turns out that the only way to choose four
numbers from the set {1, 2, 3, 4} that sum to 10 and multiply to 24 is to choose
each number exactly once. This means that we can represent the row, column,
and block conditions of Shidoku by pairs of polynomial equations of the form

w + x + y + z − 10 = 0 and wxyz − 24 = 0. (2)

Together with the previous 16 equations this gives us a total of 40 polynomial
equations that encompass the rules of Shidoku. We will call this representation
of Shidoku by polynomial equations (1) and (2) the sum-product Shidoku system.
To represent a given Shidoku puzzle using these polynomials, we simply add
more equations as necessary to specify any given cell values. For example,
using the variable-assignments in Figure 2 (right), we would add the equations
d − 4 = 0, e − 4 = 0, g − 2 = 0, j − 3 = 0, l − 1 = 0, and m − 1 = 0 to encode
the Shidoku puzzle shown in Figure 2 (left).

We can also represent Shidoku as a system of polynomial equations another
way, by considering pairs of cells that share a region rather than by considering
entire regions at a time. This is related to the graph coloring problem [11]: Given
a graph (a set of vertices connected by edges), assign each vertex a color so that
each pair of vertices joined by an edge have different colors. We can think of each
cell of a Shidoku board as a vertex, and connect the vertices for two cells exactly
when those cells lie in a common region of the board. Now consider a proper
4-coloring of the vertices of this graph and think of each color as a number in
{1, 2, 3, 4}. This corresponds to a valid variable-assignment in Shidoku since
in the graph, no two vertices connected by an edge will be assigned the same
color, and therefore on the Shidoku board, no two cells sharing a region will
be assigned the same number. The picture below shows the part of the graph
determined by the upper-left cell on the board, and a corresponding partial
variable-assignment for Shidoku.
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Figure 3: Part of the graph associated to Shidoku

To represent Shidoku as a system of polynomial equations based on pairs of
cells that share a region (i.e. pairs of vertices connected by an edge in Figure
3), we follow the graph coloring method of Bayer described in [11]. We start by
replacing the entries 1, 2, 3 and 4 by the fourth roots of unity ±1 and ±i. Note
that the actual symbols used on a Shidoku board have no effect on the rules or
the solution. We can now easily encode the fact that each cell w takes on values
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from the fourth roots of unity with the polynomial equation

w4 − 1 = 0. (3)

Now consider any two cells w and x on the Shidoku board that lie in the same
row, column, or block. We already have w4−1 = 0 and x4−1 = 0, and therefore
w4 − x4 = 0. Factoring gives (w− x)(w + x)(w2 + x2) = 0. To force w and x to
take on different values, we must have w − x 6= 0, which means that we have a
polynomial equation of the form:

(w + x)(w2 + x2) = 0. (4)

Combining the 56 equations of this form with the previous 16 equations we ob-
tain a total of 72 polynomial equations that represent the structure of Shidoku.
We will call this representation from (3) and (4) the roots-of-unity Shidoku sys-
tem. Gago-Vargas et al. [9] take a similar approach, but their system uses
integers instead of roots of unity.

Yet another approach is to introduce four Boolean variables w1, w2, w3, w4

for each cell on the Shidoku board, where we will set wk = 1 when cell w takes
the value k and wk = 0 otherwise. Note that we have now increased from 16 to
64 variables, each satisfying the polynomial equation

wk(wk − 1) = 0. (5)

This simplifies matters because (5) implies that w2 = w and therefore any power
of wk can be replaced by wk during the computation of the solution of the system
of equations. Since each cell on the board can only hold one value, for any cell
w we must have exactly one of the four associated variables wk equal to 1 and
the other three equal to 0. Because each wk can take on only the values 0 and
1, this Boolean condition can be encoded using the 16 polynomial equations of
the form

w1 + w2 + w3 + w4 = 1. (6)

Finally, we must require that any two cells w and x that lie in a common region
have different values. This means that for each possible k, at least one of xk or
wk must be 0. Because we are dealing with Boolean variables we can express this
requirement on each of the 56 pairs of cells that share a region with polynomial
equations of the form

x1w1 + x2w2 + x3w3 + x4w4 = 0. (7)

We will call this system of 136 polynomials defined by (5), (6), and (7) the
Boolean Shidoku system. Although this system involves many more variables
and polynomials than the previous two systems, there are advantages to com-
puting in the Boolean setting. Recent work has been done concerning these
methods, in particular [3, 14].

The Boolean Shidoku system we describe above is derived from the exact
cover problem [10]: Given a set and a collection of its subsets, choose some of the
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subsets so that every element in the original set is in exactly one of the subsets.
Consider building a matrix where each column is associated with an element of
the original set, and each row corresponds to a subset with xij = 1 if element j is
in subset i. Then the problem is equivalent to choosing a collection of rows such
that each column has exactly one 1 in it. One of the most efficient algorithms to
solve exact cover problems is Donald Knuth’s Algorithm X, as implemented in
an algorithm known as dancing links [12]. It is uses a backtracking depth first
recursive approach with a particularly efficient data structure, and has been
used to construct particularly fast Sudoku solvers.

There are of course many other ways to represent Shidoku, and similarly Su-
doku, with systems of polynomials. For example, equations (2) can be replaced
with the one polynomial xy + xz + xw + yz + yw + zw = 35 [1]. It is Gröbner
bases that will allow us to handle these large systems of polynomials.

3 Gröbner Basics

A Gröbner basis for a system of polynomials is a new system of polynomials
with the same solutions as the original, but which is easier to solve and often
has additional “nice” properties. An algorithm for computing Gröbner bases
was first published by Bruno Buchberger in 1965 in his PhD thesis [4]. Gröbner
was Buchberger’s thesis advisor.

To define Gröbner bases precisely, we need some abstract algebra. A polyno-
mial ring is a set of polynomials in a certain number of variables where addition
and multiplication of polynomials are defined in the usual way. For our pur-
poses, the coefficients of polynomials will come from the field Q of rational
numbers. An ideal in a polynomial ring is a subset of the ring that is closed
under polynomial addition and closed under multiplication by all polynomials
in the ring. In other words, if I is an ideal in a polynomial ring R, then for any
polynomials f and g in I and any polynomial r in R, the polynomials f + g and
rf are also in the ideal I. An ideal can be generated by a set of polynomials
just like a vector space can be spanned by a set of vectors. For example, if
I = {rf + sg + th|r, s, t ∈ R} then we say that f , g, and h generate I, and write
I = 〈f, g, h〉.

Now given a system of polynomials, we can look at the ideal generated
by these polynomials in the polynomial ring. A Gröbner basis is a “better”
generating set for this ideal. Most undergraduate mathematics students are
already familiar with Gröbner bases in two simple cases. If the polynomials in
the system are all linear, then the Gröbner basis for the ideal generated by these
polynomials is the new system of polynomials in echelon form derived by Gauss-
Jordon elimination. The new system has the same solution set as the original
system, but it is easier to solve. Also, from the new system we can tell right
away whether or not the system has one, infinitely many, or no solutions. The
well-known process of transforming the matrix into echelon form actually follows
Buchberger’s algorithm. A second commonly understood example of Gröbner
bases is the one-variable case. Suppose we have a system of polynomials in
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one variable. The greatest common divisor of these polynomials is a single
polynomial whose roots encompass all common solutions to the original system.
This greatest common divisor is the Gröbner basis of the ideal generated by
the original system of polynomials, and once again, the Euclidean algorithm for
computing the greatest common divisor follows Buchberger’s algorithm.

Our Shidoku polynomial systems are more complicated, involving non-linear
polynomials in several variables. The first step towards finding a Gröbner bases
is to establish a term ordering on the monomials. Establishing an order is also
the first step the linear case with Gauss-Jordan elimination. When performing
row reduction with two rows, we use the leading non-zero term (pivot) of one
of the polynomials to combine with the other. In Gröbner basis theory we
call this the leading term. Likewise, in the one-variable case there is a natural
ordering for the monomials, that of degree. In the Euclidean algorithm, when
we divide one polynomial by another, we only divide the first (leading) term
of the polynomial with the larger degree by the first term of the polynomial
with the smaller degree; the lower-degree terms just follow along for the ride.
For general Gröbner bases computations we will need to divide one multivariate
polynomial by another. We will do this in the same way as in the one-variable
case, by dividing just the leading terms. The term ordering that we choose will
determine the leading terms of the polynomials.

The term ordering that we will use in this paper is the lexicographical term
ordering, abbreviated Lex. Lex is almost exactly as it sounds; it is a dictionary
ordering where a’s beat b’s and c’s and the more the better. For example, if we
have variables x, y, and z and choose to order the variables as x > y > z, then
xy >Lex yz, xy >Lex xz2, and x2 >Lex x. There are many other orderings on
monomials that can be defined – in fact, infinitely many! For more information
on term orderings and optimization see [5].

Given a chosen term ordering (in our case it will be Lex), the leading term
of a polynomial f will be denoted lt(f). This leading term can be broken down
into the leading coefficient lc(f) and the leading power product lp(f), so that
lt(f)=lc(f)lp(f). Given any set S of polynomials in a polynomial ring, we define
the leading term ideal of S to be the ideal Lt(S) generated by the leading terms of
the polynomials in S, or Lt(S) = 〈lt(f)|f ∈ S〉. Note that the leading term ideal
of a set of polynomials is not necessarily equal to the leading term ideal of the
ideal generated by that set of polynomials. For example, if S = {x, x + 1} then
Lt(S) = 〈x〉, but if I = 〈x, x + 1〉, then x + 1 − x = 1 ∈ I. So Lt(I) = 〈1〉 = R.
When the leading term ideal of a set S of polynomials is equal to the leading
term ideal of the ideal I generated by S, we say that S is a Gröbner basis for the
ideal I. In other words, a set of non-zero polynomials G = {g1, g2, . . . , gt} ⊆ I
is called a Gröbner basis for I if and only if Lt(G) = Lt(I).

So why is a Gröbner basis “better” than other generating sets for an ideal?
One of the reasons is that if G is a Gröbner basis for an ideal I, then there is
a simple way to use G to determine whether or not a given polynomial f is in
the ideal I. This is done by the process of reduction. Given a polynomial f1 we
can reduce f1 by f2 by dividing f1 by f2 (that is, writing f1 = gf2 + r1 for some
polynomials g and r1 with degr1 < degf2) and replacing f1 by the remainder
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r1. Note that f1 can be divided by f2 exactly when lt(f2) divides lt(f1). Note
also that if f1 reduced by f2 gives remainder r1, then f1 − αf2 = r1. This
means that given any polynomial f , if one can reduce f by the polynomials in
G until 0 is reached, then f must be in the ideal I. On the other hand, if in the
process of reduction a polynomial is reached whose leading term is not divisible
by any of the leading terms of polynomials in G, then f cannot be in the ideal
I. We say that a Gröbner basis answers the “Ideal Membership Problem” in
this situation.

Buchberger’s algorithm guarantees the existence of a Gröbner basis for a
given ideal and term order. The easiest way to find a Gröbner basis is to use a
symbolic manipulation package such as Maple, Mathematica, CoCoA, GP/Pari,
etc. All of these systems employ Buchberger’s algorithm. The interested reader
can learn more about Gröbner bases and Buchberger’s algorithm in [2], [5], or
[8].

Thinking back to our main goal of investigating Shidoku via analysis of
polynomial systems, we can use a Gröbner bases to obtain a simpler generating
set of polynomials for either the sum-product system, the roots of unity system,
or the Boolean system. If we include additional polynomials to represent the
given values in a Shidoku puzzle with a unique solution, then the system of
polynomials will be completely determined and the resulting Gröbner basis will
consist of 16 linear polynomials that explicitly identify the solution board. (In
other words, Buchberger’s algorithm provides us with a Shidoku solver, although
not necessarily the most efficient one.) If we start with an inconsistent set of
given values for which no solution board is possible, then the Gröbner basis will
consist of the single polynomial 1, representing the impossible equation 1 = 0.
If we start with too few given values to guarantee a unique solution, then the
system will be underdetermined and the Gröbner basis will consist of (possibly)
some explicit solutions and some polynomials. If we do not add any additional
polynomials to represent given given values then the resulting system will be a
model for the structure of the Shidoku board itself.

As an example, consider the sum-product system defined by (1) and (2)
in the previous section. As in Section 2 we will use the variables a, b, c, . . . p
(from upper left to lower right) for the 16 cells on the Shidoku board. We will
use Lex term ordering with variables in reverse order p > o > n > · · · > a.
We choose the Lex ordering because of a very useful and well-known theorem in
Gröbner basis theory (see Corollary 2.2.11 in [2]): Given a system of polynomial
equations with a finite number of solutions, then the reduced Gröbner basis for
the ideal generated by these polynomials using the lexicographical term ordering
will be triangular.

Having a triangular set of polynomials is similar to having echelon form. For
example, if G is a Gröbner basis in 16 variables a < b < c < · · · < p, then the
theorem above says that the polynomials of G can be ordered as {g1, g2, . . . gs},
s ≥ 16, in such a way that g1 involves only the smallest variable a, g2 involves
only a and b and has leading term involving only b, g3 involves only a, b, and c
with leading term involving only c, and so forth until g16. There may be more
than 16 polynomials in G, but the first 16 will be in a form that allows us to
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p1 = a4 − 10a3 + 35a2 − 50a + 24

p2 = b3 + b2a + lower terms

p3 = c2 + bc + lower terms

p4 = d + c + b + a − 10

p5 = e2 + lower terms

p6 = f + e + b + a − 10

p7 = g2 − gb − ga + ab

p8 = h + g − b − a

p9 = i2 + lower terms

p10 = j2 − je − ja + ae

p11 = 18k + lower terms

p12 = 18l + lower terms

p13 = m + i + e + a − 10

p14 = n + j − e − a

p15 = 18o + lower terms

p16 = 18p + lower terms

p17 = 9gj + lower terms

Figure 4: Gröbner basis for the sum-product Shidoku system with no given
values

solve the system of equations by back substitution.
Figure 4 shows the Gröbner basis for the ideal generated by the sum-product

Shidoku system with no given values, as computed using Maple 12. Since
Gröbner bases are all about the leading terms we have omitted a large number
of lower terms in several of the polynomials. Note that the Gröbner basis algo-
rithm has reduced our generating set of 40 polynomials to a Gröbner basis of
17 polynomials. Even more importantly, the first 16 of the 17 polynomials are
in triangular form. As we will see in the next section, this triangular Gröbner
basis can be used to shed light on certain counting problems in Shidoku.

4 Counting Boards Using Gröbner Bases

Although it is not that difficult to use simple counting methods to determine that
there are exactly 288 different possible Shidoku boards, the same calculation in
the 9×9 Sudoku case is not possible by hand, and requires significant computer
time. In this section we will explore how Gröbner bases can be used to count
boards in the 4×4 Shidoku case. Similar methods may prove useful for counting
boards of larger dimension.

If we were to count the number of Shidoku boards by hand, we might begin
as follows, counting choices starting from the upper-left corner. In that upper-
left corner we have 4 choices for a. Once a is chosen we have 3 choices for b,
and then 2 choices for c and only 1 choice for d. Moving to the next row, the
previous choices of a and b only allow 2 choices for e, and then 1 choice for f .
This means that there are 4 · 3 · 2 · 1 · 2 · 1 = 48 ways to fill in the first six cells
on the board; see the Shidoku board below.

An examination of the leading terms in the Gröbner basis at the end of
Section 3 shows that the six numbers we just used for counting are in fact the
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(4)(3)(2)(1)

(2)(1)

Figure 5: Counting the number of ways to fill the first six cells

powers in the leading terms of the polynomials p1 to p6 in the Gröbner basis!
This interesting pattern can be explained algebraically. As we will see, none of
the polynomials in the Gröbner basis have repeated roots. Hence, since p1 is
quartic, the equation p1 = 0 has four possible solutions. Since p1 only involves
a, there are four choices for a. Once a choice for a is made and substituted in
p2, the equation p2 = 0 only involves b and is cubic. Therefore there are three
possible choices for b. In this way, moving through the first six polynomials
p1 to p6 in the Gröbner basis we can simply multiply leading term degrees to
obtain the same result of 4 · 3 · 2 · 1 · 2 · 1 = 48 solutions (a, b, c, d, e, f) for the
first six variables.

This reasoning would seem to imply that in determining the number of
possible Shidoku puzzles, we need only multiply the degrees of the Gröbner
basis elements. If we naively did this, we would calculate that there are 384
possible Shidoku boards. But the actual answer is 288. What went wrong?
Well, remember p17? This polynomial has a leading term containing both g and
j, which represents a branching effect that occurs when we count past the sixth
cell in the puzzle.

Counting again by hand by looking at the board, suppose we have filled in
one of the 48 possible arrangements for the first six cells on the board. One
such choice is shown in the first Shidoku board below, with (a, b, c, d, e, f) =
(1, 2, 3, 4, 3, 4). We have a choice of two values for the g cell, either g = 1 or
g = 2. If we choose g = 1 then the next cell is determined as h = 2, and another
choice arises at cell i, where we could have i = 2 or i = 4. Each of these choices
for i leads to two possible solution boards, as shown in the second and third
boards below. Note that with the choice of g = 1 there are two choices for j
after choosing i.

1 2 3 4

3 4

1 2 3 4

3 4 1© 2

2© 13 4 31

4 31 2 13

1 2 3 4

3 4 1© 2

4© 13 2 31

2 31 4 13

Figure 6: Four possible solutions when g = 1

Now consider what happens if we back up and instead make the choice g = 2.
Again this determines h = 1 and gives us a choice of i = 2 or i = 4. But this
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time, each of these choices for i leads to just one possible solution board, as
shown below. Note that with this choice of g there is only one choice for j.

1 2 3 4

3 4

1 2 3 4

3 4 2© 1

2© 1 4 3

4 3 1 2

1 2 3 4

3 4 2© 1

4© 3 1 2

2 1 4 3

Figure 7: Two possible solutions when g = 2

From the work above we see that there are 48 ·1 ·2 ·2 = 192 different Shidoku
boards that are equivalent (up to permutation of symbols) to those we found in
the g = 1 calculation above, and 48 · 1 · 2 · 1 = 96 different Shidoku boards that
are equivalent (up to permutation of symbols) to the g = 2 case above. This
gives us a total of 288 possible different Shidoku boards.

Of course the branching that happened in the calculation above would be
much more complicated in the 9×9 Sudoku case, so counting solutions by hand
will not be feasible in that larger case. It turns out that we can use a Gröbner
basis to count the solutions. Let J be the ideal generated by the Gröbner basis,
G = {p1, . . . , p17}. To count the number of solutions to the system of polynomial
equations p1 = 0, . . . p17 = 0 and hence the number of Shidoku boards, we can
simply count the number of power products that are not divisible by any of
the leading power products of G. The nice triangular Lex Gröbner basis will
assist us with this. The reason that we can do this involves a bit of algebra and
Gröbner basis theory.

Our ideal, J , is zero-dimensional which means that there are only a finite
number of solutions to the system of polynomial equations, p1 = 0, . . . , p17 = 0.
Because each variable can take on only 4 values, we have at most 416 possible
solutions. Furthermore, J is what is known as a radical ideal, meaning that
given any polynomial f such that some power of f is in J , then f is also in
J . For example, the ideal 〈x2, y2〉 is not radical, since x and y are not in the
ideal. But the ideal 〈x, y〉 is radical. The fact that the sum-product Shidoku and
Sudoku ideals are radical is well known (see Proposition 2.7 in [6]). This fact is
what allowed us to assume that we had no repeated roots in the beginning of
our Gröbner basis counting argument above.

Since our Shidoku ideal J is zero-dimensional, a well-known theorem in
Gröbner basis theory (see [2], Proposition 2.1.6) allows us to conclude that a
basis for the Q-vector space Q[a, b, . . . , p]/J can be represented by all the power
products that are not divisible by any leading power product of G. Furthermore,
since our ideal J is radical, Proposition 2.10 in [6] says that the dimension of
this vector space is in fact the number of solutions to the system of polynomials.
A similar argument is outlined in [9].

While this may sound complicated and technical, in practice it is not that
bad! In order to find the number of possible Shidoku boards, we just need to
count the power products that are not divisible by any leading power product
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of G. Let’s do that.
Recall that our Gröbner basis was computed with the Lex term ordering

with a < b < · · · < p. The nice format of the Lex Gröbner basis will make our
task easy. Consider the first polynomial p1 = a4 −10a3 +35a2−50a+24 in our
Gröbner basis. This is the only polynomial in the Gröbner basis whose leading
term is entirely in terms of a, and therefore a, a2 and a3 are power products that
are not divisible by any leading power product of a Gröbner basis polynomial.
a4, a5, a6 and so on, are divisible by a4 and are not counted. The polynomial
p2 has leading term b3 and is the only polynomial in the Gröbner basis whose
leading term is in b, so b2 and b are also power products that are not divisible
by any leading power product of a Gröbner basis polynomial. Putting these
together we can also add things like a3b2, a3b, a2b2, a2b, and so on, to our list
of power products that are not divisible by any leading power product in the
Gröbner basis.

So how many of these types of power products do we have? Any such
power product is of the form ar1br2 · · · pr16 , and by the argument above we
have 4 choices for r1 (corresponding to the choices a0 = 1, a1, a2, and a3).
Similarly we have 3 choices for r2, 2 choices for r3, 1 choice for r4, and so on
through p16 in the Gröbner basis. The resulting product of choices is so far
4 · 3 · 2 · 1 · 2 · 1 · 2 · 1 · 2 · 2 · 1 · 1 · 1 · 1 · 1 · 1 = 384, but p17 whose leading
term is 9gj still needs to be considered. We need to remove all of the power
products that are divisible by gj from our list. How many are there? Each of
these non-allowable power products are of the form ar1br2 · · · pr16 with r7 = 1
and r10 = 1, so there are 4 · 3 · 2 · 1 · 2 · 1 · 1 · 1 · 2 · 1 · 1 · 1 · 1 · 1 · 1 · 1 = 96
possible such power products to be removed from our list. This leaves us with
384−96 = 288 power products that are not divisible by any leading term in the
Gröbner basis, and thus a count of 288 different possible Shidoku boards.

5 Other Directions

We have seen how to represent the constraints of Shidoku as a system of polyno-
mial equations, find an associated Gröbner basis for the ideal generated by that
system, and use this Gröbner basis to both solve Shidoku puzzles and count the
number of Shidoku boards. The natural extension of this work is to reproduce
it for 9 × 9 Sudoku. The roots-of-unity and Boolean Shidoku systems can be
extended to Sudoku systems in an obvious way. Gago-Vargas, et al. [9] have
successfully solved Sudoku puzzles using a form of the roots-of-unity system
in cases with a large number of given values. Without any given values, how-
ever, finding a Gröbner basis for Sudoku systems with these methods is beyond
the capabilities of a typical desktop computer. An interesting approach worth
considering is the special case of Boolean Gröbner bases, where Buchberger’s
algorithm is modified to make use of the fact that variables can only take the
values 0 or 1. The work of Bernasconi, et al. [3] and Sato [14] suggests that
the computational cost of finding Gröbner bases in the Boolean case is greatly
reduced, and Sato’s conference presentation [15] suggested that puzzles with a
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unique solution could be solved very quickly with Boolean methods.
Our tests with the sum-product system for Shidoku suggest that this new

formulation is a useful one in terms of computational efficiency – if only because
the initial number of polynomial equations is relatively small. Extending it to
Sudoku requires some alterations. There is more than one choice of a selection
of nine (not necessarily distinct) integers from the set {1, 2, . . . , 9} that sum to
45 and add to 362880, namely {1, 2, 3, 4, 5, 6, 7, 8, 9} and {1, 2, 4, 4, 4, 5, 7, 9, 9}.
It turns out {−2,−1, 1, 2, 3, 4, 5, 6, 7} is the smallest (in magnitude) set of nine
integers for which the only way for nine elements of the set to have the sum and
product of the set is to choose each number exactly once. Thus for Sudoku the
equations (1) are replaced by equations of the form

(w + 2)(w + 1)(w − 1)(w − 2)(w − 3)(w − 4)(w − 5)(w − 6)(w − 7) (8)

for each of the 81 cells w on the board, and the equations (2) are replaced by

9∑

k=1

xk − 25 = 0 and
9∏

k=1

xk − 10080 = 0 (9)

for each set of cells {x1, . . . x9} that make up a row, column, or block region of
the board.

There are a large number of open Sudoku problems, including the minimum
givens problem, which asks for the smallest number of given values that can
completely determine a Sudoku board. It is conjectured that 17 is this mini-
mum number, and many Sudoku puzzles with unique solutions from 17 givens
are known. Despite many people’s extensive computational searches, no valid
16-givens puzzle has been found. Computationally enumerating all 16-givens
possibilities is not realistically feasible. This where the potential power of the
Gröbner basis approach is so appealing. Because the Gröbner basis techniques
outlined in this paper do more than just provide a Sudoku solver, they allow us
to represent the inherent structure in the rules of Sudoku in a compact way.
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Enrquez, Sudokus and Gröbner bases: not only a divertimento, Computer
algebra in scientific computing, 155–165, Lecture Notes in Comput. Sci.,
4194, Springer, Berlin, 2006.

[10] M.R. Garey & D.S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W.H. Freeman, New York, 1979.

[11] T.R. Jensen & B. Toft, Graph Coloring Problems, Wiley-Interscience, New
York, 1995.

[12] D.E. Knuth, Dancing Links, in: J. Davies, B. Roscoe & J. Woodcock, Mil-
lennial Perspectives in Computer Science: Processings of the 1999 Oxford-
Microsoft Symposium in Honour of Sir Tony Hoare, Palgrave, 2000, 187–
214.

[13] E. Russell & F. Jarvis, Mathematics of Sudoku II, Mathematical Spectrum,
39, 2006, 54–58.

[14] Y. Sato, A. Nagai & S. Inoue, On the Computation of Elimination Ideals of
Boolean Polynomial Rings, in: D. Kapur, Ed., Computer Mathematics: 8th
Asian Symposium, ASCM 2007, Singapore, December 15-17, 2007, Revised
and invited Papers, Lecture Notes In Artificial Intelligence, 5081, Springer-
Verlag, Berlin, 2008, 334–348.
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