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Abstract

We classify by elementary methods the p-colorability of torus knots,
and prove that every p-colorable torus knot has exactly one nontrivial
p-coloring class. As a consequence, we note that the two-fold branched
cyclic cover of a torus knot complement has cyclic first homology group.

MR Subject Classifications: 57M27, 056C15

1 Introduction

Our first result is a theorem specifically determining the p-colorability of any
(m,n) torus knot. It has been previously shown that a (m,m — 1) torus knot is
always p-colorable for p equal to m or m — 1 depending on which is odd (see [6]
and [13]). Another proven result is that a (2,n) torus knot is always p-colorable
for p equal to n and a (3,n) torus knot is always 3-colorable if n is even [13]. A
result similar to ours was also stated as a lemma without proof in [3].

Our second result shows that any p-colorable (m,n) torus knot has only one
nontrivial p-coloring class. A general result investigating colorings of torus knots
by finite Alexander quandles appears in [2]. Our result is a special instance of
this result; however, we present a proof using only elementary techniques. p-
coloring classes have also previously been investigated in relationship to pretzel
knots by [4]. An immediate corollary of this result is that any nontrivial p-
coloring of the standard braid representation of 75, , must use all p colors.
Distribution of colors in p-colorings of knots has been previously investigated
with the Kauffman-Harary Conjecture, which examines the distribution of colors
in a p-coloring of an alternating knot with prime determinant. Asaeda, Przytcki,
and Sikora prove the Harary-Kauffman Conjecture is true for pretzel knots and
Montesinos knots in [1]. Another immediate corollary is that the first homology
groups of certain branched cyclic covers of torus knot complements (see [5], [11])
are cyclic.
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2 Notation

Given a prime p > 2 and a projection of a knot K with strands s1,ss2,...,S,, a
p-coloring is an assignment cy, g, .. .c, of elements of Z, to the strands of the
projection that satisfies the condition that at each crossing where s;, s; are the
undercrossing strands and sy, is the overcrossing strand, ¢; +¢; —2¢; = 0 mod p.
A p-coloring is said to be nontrivial if at least two distinct “colors” in Z, are used.
p-colorability is invariant under Reidemeister moves and is thus a knot invariant,
so a knot K is p-colorable if its projections admit non-trivial p-colorings.

Equivalently, a knot K is p-colorable if there exists an onto homomorphism
from the knot group 71(S® — K) of K to the dihedral group

Dy, = (a,b] a® = 1,V = 1,abab = 1).

The knot group G can be expressed via the Wirtinger presentation, as fol-
lows. Given a projection of K, define loops x1,x2,...,x, around the strands
81,82, - .., S, respectively, following the right hand rule. At each crossing where
s; terminates, s; originates, and sy, is the overcrossing strand we have a relation
R; that is either of the form z; = x,;la:ixk or x; = xkxix,;l, depending on
whether the sign of the crossing is positive or negative (see Section D of chapter
3 of [12]). With this notation, the Wirtinger presentation for the knot group of
K is:
7T1(S3 - K) = <I1,I2, ey Ty | Rl,RQ, AN .,RT>.

It is a simple exercise to prove that an assignment of colors ¢y, ca,...¢, € Zy is a
proper p-coloring of a projection of K if and only if the map 0: m1(S*—~K) — Do,
defined by 0(z;) = ab®*?) is an onto homomorphism (see p.122 of [8]).

Two p-colorings ¢y, co, ..., ¢ and dy,ds, ..., d, of a projection of K are said
to be equivalent, or in the same p-coloring class if for all 1 < 4,5 < r, ¢; = ¢;
if and only if d; = d;; in this case we say that the two p-colorings differ only
by a permutation of the colors. This definition of p-coloring classes corresponds
directly to the mod p rank discussed in chapter 3 of [9].

3 p-Colorability of Torus Knots

Let T, represent the torus knot characterized by the number of times m that
it circles around the meridian of the torus and the number of times n that it
circles around the longitude of the torus. T, , has one component if and only
if m and n are relatively prime. It is well-known that every knot is the closure
of some braid (see chapter 3 of [9]). For example, the trefoil knot T3 is the
closure of the braid (o;02)? shown in Figure ??, where o; represents a crossing
where string ¢ — 1 crosses over string 4. In general, the torus knot 7T}, ,, can be
realized as the closure of the braid word (o102 - 0pm—20m—1)".

Since T}, » is equivalent to T, ,,, the following theorem completely charac-
terizes the p-colorability of torus knots. Note that if 77, , has one component
then m and n cannot both be even. Results similar to those in Theorem 1 were
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Figure 1: The braid (o4 02)2 and its closure T3 5.

stated without proof by Asami and Satoh in [3]. We present an elementary
proof here.

Theorem 1. Suppose Ty, is a torus knot and p is prime.
i) If m and n are both odd, then T, ,, is not p-colorable.
it) If m is odd and n is even, then Ty, is p-colorable if and only if plm.

Proof. If p is prime, then a knot K is p-colorable if and only if p divides det(K)
(see chapter 3 of [9]). We will show that the determinant of T, ,, is

1, if m and n are both odd
m, if m is odd and n is even.

det(T.n) = {

By [10] we have det(K) = |Ag(—1)|, where Ag(t) is the Alexander polynomial
of K. The Alexander polynomial for 1), , is given by (see part C of chapter 9
of [5])

™ —-1)(t-1)

A )= ————=.

T (1) tm — )" — 1)
Therefore if m and n are both odd, we have Ar,  (-1) = g:ggg:gg = 1.
If m is odd and n is even, then by L’Hopital’s rule we have Ag,  (—1) =
(mn+1)+mn—1 — m. O

(m+n)—m+n

4 p-Coloring Classes of Torus Knots

Our second theorem is a special case of a result found by Asami and Kuga in
[2]. They prove that if a knot T}, , can be p-colored using a finite Alexander
quandle, it has a total of p? trivial and non-trivial colorings. If T, , cannot
be colored by such a quandle, then it has only the p trivial colorings. It is
important to note that Asami and Kuga only consider the total number of all p-
colorings without distinguishing between equivalent colorings, while we consider
equivalence classes of p-colorings, or p-coloring classes. Also note that the proof
of Theorem 2 will show that every non-trivial p-coloring of the standard braid
projection of T}, , must use all p colors.



Figure 2: The action of ¢ on the j** color array of T}, ,,.

Theorem 2. If p is prime and T, is p-colorable, then T, , has only one
nontrivial p-coloring class.

Proof. If T, ,, is p-colorable, then by Theorem 1 can assume without loss of
generality that we have m odd, n even, and plm. Given a p-coloring of T,
in the standard m-stand braid projection, let its j™ color array be the ele-
ment of (Z,)™ whose i'" component is the color of the i*" strand of the braid

representation of T, ,, after j cycles. The map ¢ : (Z,)™ — (Zp,)™ defined by
é(co,c1y- vy em—1) = (20 — €1,2¢0 — C2,...,2¢c0 — Cm—1, o)

describes the transistion from the j** to the (j + 1)t color array of a according
the rules of p-colorability, as seen in Figure 1. Note that a p-coloring of T}, ,, is
entirely determined by its initial color array, and that to have a proper p-coloring
it is necessary and sufficient that ¢™ fixes this initial color array.

Now since p divides the number m of braid strands in our projection of T}, ,
we can consider the 0" color array that consists of the colors 0,1,...,p — 1
listed in order % times:

Co=(0,1,...;p—2,p—1,0,1,...,p—2,p—1, ..., p—2,p—1).
Under the action of ¢, the 1% color array is clearly
o(Co)=p-1,p—2,...,1,0, p—1,p—2,...,1,0, ...,1,0),
and the 2" color array is

(152(00):(0717-'-7]9_2719_17 0717"'7p_27p_17 7p_27p_1)

Since ¢? fixes Cy and n is even, we know that ¢" fixes Cy and thus the initial
color array Cj induces a nontrivial p-coloring.

Note that the p-coloring constructed above has the property that its initial
color array co,c1,¢C2,...,Cm—1 has constant variance of 1, since ¢j11 —¢; =1
for all 0 < j < m (with indices mod m). It can be shown by elementary, but
tedious, methods that if T}, ,, is a one-component link then any p-coloring of its
standard m-strand braid projection will have constant variance (not necessarily



equal to 1), and that all such p-colorings are equivalent to the p-coloring con-
structed above. Thankfully, the reviewer for this paper suggested a much more
elegant method of proving that up to equivalence there can be no more than
one nontrivial p-coloring of T}, ,, as follows.

Seeking a contradiction, suppose that there are two non-equivalent nontriv-
ial p-colorings c1,ca,...,¢r, di,da,...,d, of a projection of T}, , with strands
81,89, ..,8-. We will show that these colorings induce what we can think of as a
Zyp & Zy-coloring (c1,d1), . .. (¢r,dy) of the strands of the projection in the sense
that we have an onto homomorphism from the knot group 6 from (5% — K)
to the generalized Dihedral group D = {(a,b | a®* = 1,b € Z;, ® Z,,,abab = 1).

In the notation above, and writing b = (b, ba), define 8(x;) = a(bS?,b3). We
will show that 6 is onto by showing that a, (b1, 1), and (1,b2) are in its image.
By non-equivalence there must exist some ¢, j such that either ¢; = ¢ = j but
d; # dj, or d; = dj but ¢; # ¢;. Without loss of generality we will assume the
former. With this 4, j it is a simple exercise to show that ¢(x;z;) = (1, bgjidi).
Since d; — d; # 0 and p is prime, some power of this element is (1,b2). Now
since c1,co,...,c, is a nontrivial p-coloring there must exist some k such that
¢i # ¢k, and for this i,k we have ¢(x;xr) = (bf’“_ci,bg’“_di). The product of
this element with (1,b2)% =% is (b{* 7, 1), and again since ¢ — ¢; # 0 and p is
prime, some power of this is (b1,1). We now see immediately that a is in the
image of 6 since 6(x;) (b, by %) = a.

The existence of this onto map 6 provides a contradiction to there being
two non-equivalent p-colorings, as follows. It is well-known (see p.58 of [5])
that 71(S3 — Tyn) = (m,y | 2™ = y™), and that the center Z of this group is
generated by ™. Since 6 is onto and thus carries centers into centers, 8(Z) is
contained in the center of D, which is trivial since p is odd. Therefore Z € ker 6,
and thus the map 6 factors through the group (z,y | 2™ = 1,y™ = 1). This
induces a map §: (z,y | ™ = 1,y™ = 1) — D, which must be onto since 6
is onto. But there can be no onto homomorphism from a free product of two
cyclic groups to a group whose presentation requires at least three generators.
Therefore there can be only one nontrivial p-coloring class for 15, ,, namely the
one we constructed above. O

Notice that the proof of Theorem 2 shows that any p-coloring of the standard
minimal projection of a torus knot must use all p colors. In particular, this gives
another proof that torus knots of the form 7}, » for p an odd prime satisfy the
Kauffman-Harary conjecture (6.2 in [7]); such torus knots are alternating with
determinant p, and the least number of colors needed to nontrivially color a
minimal projection of T}, » will be equal to the crossing number p.

The reviewer for this paper pointed out to the authors that another immedi-
ate consequence of our elementary result in Theorem 2 is that the first homology
groups of certain ¢-fold branched cyclic covers of torus knot complements are
cyclic. The requirement that this homology group be cyclic in the two-fold case
has been suggested as a weaker hypothesis for the Kauffman-Harary conjecture
(p.7 of [1]). Given a torus knot T}y, , let C¥, ,, denote the g-fold branched cyclic
cover of S3 — T, , (see 8.18 in [5]).



Corollary 3. Ifq = 24+kmn for some nonnegative integer k, then the homology
group Hy(CY, ,,) is cyclic.

Proof. By 14.8 in [5], Ty, is p-colorable for some prime p if and only if p
divides |H(C2,,))|. For each such prime p, Theorem 2 shows that there is
only one nontrivial p-coloring class, which in turn guarantees that the 2-fold
branched cyclic cover of the knot complement contains only one subgroup of
order p (see Section 3 of [11]). Since this is true for all primes p that divide
|Hy (éﬁmﬂ, the result follows in the ¢ = 2 (i.e. kK =0) case. The general result
now follows from the fact that the g-fold coverings have period mn (see 6.15 in
[5]), i.e. égm = égﬂfm” for any nonnegative integer k. O

The authors of this paper would like to thank the reviewer, who made ex-
tremely detailed comments and in addition suggested a more streamlined ar-

gument and a way to extend our original results (Corollary 3). This work was
supported by NSF grant number NSF-DMS 0243845.
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