Abstract

We classify by elementary methods the \(p \)-colorability of torus knots, and prove that every \(p \)-colorable torus knot has exactly one nontrivial \(p \)-coloring class. As a consequence, we note that the two-fold branched cyclic cover of a torus knot complement has cyclic first homology group.

MR Subject Classifications: 57M27, 05C15

1 Introduction

Our first result is a theorem specifically determining the \(p \)-colorability of any \((m, n)\) torus knot. It has been previously shown that a \((m, m - 1)\) torus knot is always \(p \)-colorable for \(p \) equal to \(m \) or \(m - 1 \) depending on which is odd (see [6] and [13]). Another proven result is that a \((2, n)\) torus knot is always \(p \)-colorable for \(p \) equal to \(n \) and a \((3, n)\) torus knot is always 3-colorable if \(n \) is even [13]. A result similar to ours was also stated as a lemma without proof in [3].

Our second result shows that any \(p \)-colorable \((m, n)\) torus knot has only one nontrivial \(p \)-coloring class. A general result investigating colorings of torus knots by finite Alexander quandles appears in [2]. Our result is a special instance of this result; however, we present a proof using only elementary techniques. \(p \)-coloring classes have also previously been investigated in relationship to pretzel knots by [4]. An immediate corollary of this result is that any nontrivial \(p \)-coloring of the standard braid representation of \(T_{m,n} \) must use all \(p \) colors. Distribution of colors in \(p \)-colorings of knots has been previously investigated with the Kauffman-Harary Conjecture, which examines the distribution of colors in a \(p \)-coloring of an alternating knot with prime determinant. Asaeda, Przytcki, and Sikora prove the Harary-Kauffman Conjecture is true for pretzel knots and Montesinos knots in [1]. Another immediate corollary is that the first homology groups of certain branched cyclic covers of torus knot complements (see [5], [11]) are cyclic.

*Dept. of Mathematics and Statistics, James Madison University, MSC 1911, Harrisonburg, VA 22807; taal@math.jmu.edu.
2 Notation

Given a prime \(p > 2 \) and a projection of a knot \(K \) with strands \(s_1, s_2, \ldots, s_r \), a \(p \)-coloring is an assignment \(c_1, c_2, \ldots, c_r \) of elements of \(\mathbb{Z}_p \) to the strands of the projection that satisfies the condition that at each crossing where \(s_i, s_j \) are the undercrossing strands and \(s_k \) is the overcrossing strand, \(c_i + c_j - 2c_k = 0 \mod p \).

A \(p \)-coloring is said to be nontrivial if at least two distinct “colors” in \(\mathbb{Z}_p \) are used.

\(p \)-colorability is invariant under Reidemeister moves and is thus a knot invariant, so a knot \(K \) is \(p \)-colorable if its projections admit non-trivial \(p \)-colorings.

Equivalently, a knot \(K \) is \(p \)-colorable if there exists an onto homomorphism from the knot group \(\pi_1(S^3 - K) \) of \(K \) to the dihedral group

\[
D_{2p} = \langle a, b \mid a^2 = 1, b^p = 1, abab = 1 \rangle.
\]

The knot group \(G \) can be expressed via the Wirtinger presentation, as follows. Given a projection of \(K \), define loops \(x_1, x_2, \ldots, x_r \) around the strands \(s_1, s_2, \ldots, s_r \), respectively, following the right hand rule. At each crossing where \(s_i \) terminates, \(s_j \) originates, and \(s_k \) is the overcrossing strand we have a relation \(R_j \) that is either of the form \(x_j = x_k^{-1}x_i x_k \) or \(x_j = x_k x_i x_k^{-1} \), depending on whether the sign of the crossing is positive or negative (see Section D of chapter 3 of [12]). With this notation, the Wirtinger presentation for the knot group of \(K \) is:

\[
\pi_1(S^3 - K) = \langle x_1, x_2, \ldots, x_r \mid R_1, R_2, \ldots, R_r \rangle.
\]

It is a simple exercise to prove that an assignment of colors \(c_1, c_2, \ldots, c_r \in \mathbb{Z}_p \) is a proper \(p \)-coloring of a projection of \(K \) if and only if the map \(\theta : \pi_1(S^3 - K) \to D_{2p} \) defined by \(\theta(x_i) = ab^{c_i} \) is an onto homomorphism (see p.122 of [8]).

Two \(p \)-colorings \(c_1, c_2, \ldots, c_r \) and \(d_1, d_2, \ldots, d_r \) of a projection of \(K \) are said to be equivalent, or in the same \(p \)-coloring class if for all \(1 \leq i, j \leq r \), \(c_i = c_j \) if and only if \(d_i = d_j \); in this case we say that the two \(p \)-colorings differ only by a permutation of the colors. This definition of \(p \)-coloring classes corresponds directly to the mod \(p \) rank discussed in chapter 3 of [9].

3 \(p \)-Colorability of Torus Knots

Let \(T_{m,n} \) represent the torus knot characterized by the number of times \(m \) that it circles around the meridian of the torus and the number of times \(n \) that it circles around the longitude of the torus. \(T_{m,n} \) has one component if and only if \(m \) and \(n \) are relatively prime. It is well-known that every knot is the closure of some braid (see chapter 3 of [9]). For example, the trefoil knot \(T_{3,2} \) is the closure of the braid \((\sigma_1 \sigma_2)^2 \) shown in Figure ??, where \(\sigma_i \) represents a crossing where string \(i - 1 \) crosses over string \(i \). In general, the knot \(T_{m,n} \) can be realized as the closure of the braid word \((\sigma_1 \sigma_2 \cdots \sigma_{m-2} \sigma_{m-1})^n \).

Since \(T_{m,n} \) is equivalent to \(T_{n,m} \), the following theorem completely characterizes the \(p \)-colorability of torus knots. Note that if \(T_{m,n} \) has one component then \(m \) and \(n \) cannot both be even. Results similar to those in Theorem 1 were
stated without proof by Asami and Satoh in [3]. We present an elementary proof here.

Theorem 1. Suppose $T_{m,n}$ is a torus knot and p is prime.

i) If m and n are both odd, then $T_{m,n}$ is not p-colorable.

ii) If m is odd and n is even, then $T_{m,n}$ is p-colorable if and only if $p|m$.

Proof. If p is prime, then a knot K is p-colorable if and only if p divides $\det(K)$ (see chapter 3 of [9]). We will show that the determinant of $T_{m,n}$ is

$$\det(T_{m,n}) = \begin{cases} 1, & \text{if } m \text{ and } n \text{ are both odd} \\ m, & \text{if } m \text{ is odd and } n \text{ is even.} \end{cases}$$

By [10] we have $\det(K) = |\Delta_K(-1)|$, where $\Delta_K(t)$ is the Alexander polynomial of K. The Alexander polynomial for $T_{m,n}$ is given by (see part C of chapter 9 of [5])

$$\Delta_{T_{m,n}}(t) = \frac{(t^{mn} - 1)(t - 1)}{(t^m - 1)(t^n - 1)}.$$

Therefore if m and n are both odd, we have $\Delta_{T_{m,n}}(-1) = \frac{(-2)(-2)}{(-2)(-2)} = 1$. If m is odd and n is even, then by L’Hôpital’s rule we have $\Delta_{T_{m,n}}(-1) = \frac{\frac{(mn+1)+mn-1}{(m+n)^2-m+n}}{m} = m$.

\[\square \]

4 p-Coloring Classes of Torus Knots

Our second theorem is a special case of a result found by Asami and Kuga in [2]. They prove that if a knot $T_{m,n}$ can be p-colored using a finite Alexander quandle, it has a total of p^2 trivial and non-trivial colorings. If $T_{m,n}$ cannot be colored by such a quandle, then it has only the p trivial colorings. It is important to note that Asami and Kuga only consider the total number of all p-colorings without distinguishing between equivalent colorings, while we consider equivalence classes of p-colorings, or p-coloring classes. Also note that the proof of Theorem 2 will show that every non-trivial p-coloring of the standard braid projection of $T_{m,n}$ must use all p colors.
Figure 2: The action of \(\phi \) on the \(j \)'th color array of \(T_{m,n} \).

Theorem 2. If \(p \) is prime and \(T_{m,n} \) is \(p \)-colorable, then \(T_{m,n} \) has only one nontrivial \(p \)-coloring class.

Proof. If \(T_{m,n} \) is \(p \)-colorable, then by Theorem 1 can assume without loss of generality that we have \(m \) odd, \(n \) even, and \(p \mid m \). Given a \(p \)-coloring of \(T_{m,n} \) in the standard \(m \)-stand braid projection, let its \(j \)'th color array be the element of \((\mathbb{Z}_p)^m\) whose \(i \)'th component is the color of the \(i \)'th strand of the braid representation of \(T_{m,n} \) after \(j \) cycles. The map \(\phi : (\mathbb{Z}_p)^m \rightarrow (\mathbb{Z}_p)^m \) defined by

\[
\phi(c_0, c_1, \ldots, c_{m-1}) = (2c_0 - c_1, 2c_0 - c_2, \ldots, 2c_0 - c_{m-1}, c_0)
\]

describes the transition from the \(j \)'th to the \((j + 1) \)'st color array of \(\alpha \) according the rules of \(p \)-colorability, as seen in Figure 1. Note that a \(p \)-coloring of \(T_{m,n} \) is entirely determined by its initial color array, and that to have a proper \(p \)-coloring it is necessary and sufficient that \(\phi^n \) fixes this initial color array.

Now since \(p \) divides the number \(m \) of braid strands in our projection of \(T_{m,n} \), we can consider the \(0 \)'th color array that consists of the colors \(0, 1, \ldots, p - 1 \) listed in order \(\frac{m}{p} \) times:

\[
C_0 = (0, 1, \ldots, p - 2, p - 1, 0, 1, \ldots, p - 2, p - 1, \ldots, p - 2, p - 1).
\]

Under the action of \(\phi \), the \(1 \)'st color array is clearly

\[
\phi(C_0) = (p - 1, p - 2, \ldots, 1, 0, p - 1, p - 2, \ldots, 1, 0, \ldots, 1, 0),
\]

and the \(2 \)'nd color array is

\[
\phi^2(C_0) = (0, 1, \ldots, p - 2, p - 1, 0, 1, \ldots, p - 2, p - 1, \ldots, p - 2, p - 1).
\]

Since \(\phi^2 \) fixes \(C_0 \) and \(n \) is even, we know that \(\phi^n \) fixes \(C_0 \) and thus the initial color array \(C_0 \) induces a nontrivial \(p \)-coloring.

Note that the \(p \)-coloring constructed above has the property that its initial color array \(c_0, c_1, c_2, \ldots, c_{m-1} \) has constant variance of 1, since \(c_{j+1} - c_j = 1 \) for all \(0 \leq j \leq m \) (with indices mod \(m \)). It can be shown by elementary, but tedious, methods that if \(T_{m,n} \) is a one-component link then any \(p \)-coloring of its standard \(m \)-strand braid projection will have constant variance (not necessarily
equal to 1), and that all such p-colorings are equivalent to the p-coloring constructed above. Thankfully, the reviewer for this paper suggested a much more elegant method of proving that up to equivalence there can be no more than one nontrivial p-coloring of $T_{m,n}$, as follows.

Seeking a contradiction, suppose that there are two non-equivalent nontrivial p-colorings $c_1, c_2, \ldots, c_r, d_1, d_2, \ldots, d_r$ of a projection of $T_{m,n}$ with strands s_1, s_2, \ldots, s_r. We will show that these colorings induce what we can think of as a $\mathbb{Z}_p \oplus \mathbb{Z}_p$-coloring $(c_1, d_1, \ldots, c_r, d_r)$ of the strands of the projection in the sense that we have an onto homomorphism from the knot group θ from $\pi_1(S^3 - K)$ to the generalized Dihedral group $D = \langle a, b \mid a^2 = 1, b \in \mathbb{Z}_p \oplus \mathbb{Z}_p, abab = 1 \rangle$.

In the notation above, and writing $b = (b_1, b_2)$, define $\theta(x_i) = a(b_i^{c_i}, b_i^{d_i})$. We will show that θ is onto by showing that $a, (b_1, 1)$, and $(1, b_2)$ are in its image. By non-equivalence there must exist some i, j such that either $c_i = c = j$ but $d_i \neq d_j$, or $d_i = d_j$ but $c_i \neq c_j$. Without loss of generality we will assume the former. With this i, j it is a simple exercise to show that $\phi(x_i x_j) = (1, b_2^{d_j - d_i})$. Since $d_j - d_i \neq 0$ and p is prime, some power of this element is $(1, b_2)$. Now since c_1, c_2, \ldots, c_r is a nontrivial p-coloring there must exist some k such that $c_i \neq c_k$, and for this i, k we have $\phi(x_i x_k) = (b_1^{d_k - c_i}, b_2^{c_k - d_i})$. The product of this element with $(1, b_2)^{-d_k + d_i}$ is $(b_1^{d_k - c_i}, 1)$, and again since $c_k - c_i \neq 0$ and p is prime, some power of this is $(b_1, 1)$. We now see immediately that a is in the image of θ since $\theta(x_i)(b_1^{-c_i}, b_2^{d_i}) = a$.

The existence of this onto map θ provides a contradiction to there being two non-equivalent p-colorings, as follows. It is well-known (see p.58 of [5]) that $\pi_1(S^3 - T_{m,n}) = \langle x, y \mid x^m = y^n \rangle$, and that the center Z of this group is generated by x^m. Since θ is onto and thus carries centers into centers, $\theta(Z)$ is contained in the center of D, which is trivial since p is odd. Therefore $Z \subseteq \ker \theta$, and thus the map θ factors through the group $\langle x, y \mid x^m = 1, y^m = 1 \rangle$. This induces a map $\beta: \langle x, y \mid x^m = 1, y^m = 1 \rangle \to D$, which must be onto since θ is onto. But there can be no onto homomorphism from a free product of two cyclic groups to a group whose presentation requires at least three generators. Therefore there can be only one nontrivial p-coloring class for $T_{m,n}$, namely the one we constructed above.

Notice that the proof of Theorem 2 shows that any p-coloring of the standard minimal projection of a torus knot must use all p colors. In particular, this gives another proof that torus knots of the form $T_{p,2}$ for p an odd prime satisfy the Kauffman-Harary conjecture (6.2 in [7]); such torus knots are alternating with determinant p, and the least number of colors needed to nontrivially color a minimal projection of $T_{p,2}$ will be equal to the crossing number p.

The reviewer for this paper pointed out to the authors that another immediate consequence of our elementary result in Theorem 2 is that the first homology groups of certain q-fold branched cyclic covers of torus knot complements are cyclic. The requirement that this homology group be cyclic in the two-fold case has been suggested as a weaker hypothesis for the Kauffman-Harary conjecture (p.7 of [1]). Given a torus knot $T_{m,n}$, let $\hat{C}_{m,n}^q$ denote the q-fold branched cyclic cover of $S^3 - T_{m,n}$ (see 8.18 in [5]).
Corollary 3. If $q = 2 + kmn$ for some nonnegative integer k, then the homology group $H_1(\hat{C}_{m,n}^q)$ is cyclic.

Proof. By 14.8 in [5], $T_{m,n}$ is p-colorable for some prime p if and only if p divides $|H_1(\hat{C}_{m,n}^2)|$. For each such prime p, Theorem 2 shows that there is only one nontrivial p-coloring class, which in turn guarantees that the 2-fold branched cyclic cover of the knot complement contains only one subgroup of order p (see Section 3 of [11]). Since this is true for all primes p that divide $|H_1(\hat{C}_{m,n}^2)|$, the result follows in the $q = 2$ (i.e. $k = 0$) case. The general result now follows from the fact that the q-fold coverings have period mn (see 6.15 in [5]), i.e. $\hat{C}_{m,n}^q \cong \hat{C}_{m,n}^{q+kmn}$ for any nonnegative integer k. \hfill \Box

The authors of this paper would like to thank the reviewer, who made extremely detailed comments and in addition suggested a more streamlined argument and a way to extend our original results (Corollary 3). This work was supported by NSF grant number NSF-DMS 0243845.

References

