p-Coloring Classes of Torus Knots

Anna-Lisa Breiland
Layla Oesper
Laura Taalman *

Abstract

We classify by elementary methods the p-colorability of torus knots, and prove that every p-colorable torus knot has exactly one nontrivial p-coloring class. As a consequence, we note that the two-fold branched cyclic cover of a torus knot complement has cyclic first homology group.

MR Subject Classifications: 57M27, 05C15

1 Introduction

Our first result is a theorem specifically determining the p-colorability of any (m, n) torus knot. It has been previously shown that a $(m, m-1)$ torus knot is always p-colorable for p equal to m or $m-1$ depending on which is odd (see [6] and [13]). Another proven result is that a $(2, n)$ torus knot is always p-colorable for p equal to n and a (3, n) torus knot is always 3 -colorable if n is even [13]. A result similar to ours was also stated as a lemma without proof in [3].

Our second result shows that any p-colorable (m, n) torus knot has only one nontrivial p-coloring class. A general result investigating colorings of torus knots by finite Alexander quandles appears in [2]. Our result is a special instance of this result; however, we present a proof using only elementary techniques. pcoloring classes have also previously been investigated in relationship to pretzel knots by [4]. An immediate corollary of this result is that any nontrivial p coloring of the standard braid representation of $T_{m, n}$ must use all p colors. Distribution of colors in p-colorings of knots has been previously investigated with the Kauffman-Harary Conjecture, which examines the distribution of colors in a p-coloring of an alternating knot with prime determinant. Asaeda, Przytcki, and Sikora prove the Harary-Kauffman Conjecture is true for pretzel knots and Montesinos knots in [1]. Another immediate corollary is that the first homology groups of certain branched cyclic covers of torus knot complements (see [5], [11]) are cyclic.

[^0]
2 Notation

Given a prime $p>2$ and a projection of a knot K with strands $s_{1}, s_{2}, \ldots, s_{r}$, a p-coloring is an assignment $c_{1}, c_{2}, \ldots c_{r}$ of elements of \mathbb{Z}_{p} to the strands of the projection that satisfies the condition that at each crossing where s_{i}, s_{j} are the undercrossing strands and s_{k} is the overcrossing strand, $c_{i}+c_{j}-2 c_{k}=0 \bmod p$. A p-coloring is said to be nontrivial if at least two distinct "colors" in \mathbb{Z}_{p} are used. p-colorability is invariant under Reidemeister moves and is thus a knot invariant, so a knot K is p-colorable if its projections admit non-trivial p-colorings.

Equivalently, a knot K is p-colorable if there exists an onto homomorphism from the knot group $\pi_{1}\left(S^{3}-K\right)$ of K to the dihedral group

$$
D_{2 p}=\left\langle a, b \mid a^{2}=1, b^{p}=1, a b a b=1\right\rangle .
$$

The knot group G can be expressed via the Wirtinger presentation, as follows. Given a projection of K, define loops $x_{1}, x_{2}, \ldots, x_{r}$ around the strands $s_{1}, s_{2}, \ldots, s_{r}$, respectively, following the right hand rule. At each crossing where s_{i} terminates, s_{j} originates, and s_{k} is the overcrossing strand we have a relation R_{j} that is either of the form $x_{j}=x_{k}^{-1} x_{i} x_{k}$ or $x_{j}=x_{k} x_{i} x_{k}^{-1}$, depending on whether the sign of the crossing is positive or negative (see Section D of chapter 3 of [12]). With this notation, the Wirtinger presentation for the knot group of K is:

$$
\pi_{1}\left(S^{3}-K\right)=\left\langle x_{1}, x_{2}, \ldots, x_{r} \mid R_{1}, R_{2}, \ldots, R_{r}\right\rangle
$$

It is a simple exercise to prove that an assignment of colors $c_{1}, c_{2}, \ldots c_{r} \in \mathbb{Z}_{p}$ is a proper p-coloring of a projection of K if and only if the map $\theta: \pi_{1}\left(S^{3}-K\right) \rightarrow D_{2 p}$ defined by $\theta\left(x_{i}\right)=a b^{c\left(s_{i}\right)}$ is an onto homomorphism (see p. 122 of [8]).

Two p-colorings $c_{1}, c_{2}, \ldots, c_{r}$ and $d_{1}, d_{2}, \ldots, d_{r}$ of a projection of K are said to be equivalent, or in the same p-coloring class if for all $1 \leq i, j \leq r, c_{i}=c_{j}$ if and only if $d_{i}=d_{j}$; in this case we say that the two p-colorings differ only by a permutation of the colors. This definition of p-coloring classes corresponds directly to the $\bmod p$ rank discussed in chapter 3 of [9].

$3 \quad p$-Colorability of Torus Knots

Let $T_{m, n}$ represent the torus knot characterized by the number of times m that it circles around the meridian of the torus and the number of times n that it circles around the longitude of the torus. $T_{m, n}$ has one component if and only if m and n are relatively prime. It is well-known that every knot is the closure of some braid (see chapter 3 of [9]). For example, the trefoil knot $T_{3,2}$ is the closure of the braid $\left(\sigma_{1} \sigma_{2}\right)^{2}$ shown in Figure ??, where σ_{i} represents a crossing where string $i-1$ crosses over string i. In general, the torus knot $T_{m, n}$ can be realized as the closure of the braid word $\left(\sigma_{1} \sigma_{2} \cdots \sigma_{m-2} \sigma_{m-1}\right)^{n}$.

Since $T_{m, n}$ is equivalent to $T_{n, m}$, the following theorem completely characterizes the p-colorability of torus knots. Note that if $T_{m, n}$ has one component then m and n cannot both be even. Results similar to those in Theorem 1 were

Figure 1: The braid $\left(\sigma_{1} \sigma_{2}\right)^{2}$ and its closure $T_{3,2}$.
stated without proof by Asami and Satoh in [3]. We present an elementary proof here.

Theorem 1. Suppose $T_{m, n}$ is a torus knot and p is prime.
i) If m and n are both odd, then $T_{m, n}$ is not p-colorable.
ii) If m is odd and n is even, then $T_{m, n}$ is p-colorable if and only if $p \mid m$.

Proof. If p is prime, then a knot K is p-colorable if and only if $p \operatorname{divides} \operatorname{det}(K)$ (see chapter 3 of [9]). We will show that the determinant of $T_{m, n}$ is

$$
\operatorname{det}\left(T_{m, n}\right)=\left\{\begin{aligned}
1, & \text { if } m \text { and } n \text { are both odd } \\
m, & \text { if } m \text { is odd and } n \text { is even }
\end{aligned}\right.
$$

By [10] we have $\operatorname{det}(K)=\left|\Delta_{K}(-1)\right|$, where $\Delta_{K}(t)$ is the Alexander polynomial of K. The Alexander polynomial for $T_{m, n}$ is given by (see part C of chapter 9 of [5])

$$
\Delta_{T_{m, n}}(t)=\frac{\left(t^{m n}-1\right)(t-1)}{\left(t^{m}-1\right)\left(t^{n}-1\right)}
$$

Therefore if m and n are both odd, we have $\Delta_{T_{m, n}}(-1)=\frac{(-2)(-2)}{(-2)(-2)}=1$. If m is odd and n is even, then by L'Hôpital's rule we have $\Delta_{T_{m, n}}(-1)=$ $\frac{(m n+1)+m n-1}{(m+n)-m+n}=m$.

4 p-Coloring Classes of Torus Knots

Our second theorem is a special case of a result found by Asami and Kuga in [2]. They prove that if a knot $T_{m, n}$ can be p-colored using a finite Alexander quandle, it has a total of p^{2} trivial and non-trivial colorings. If $T_{m, n}$ cannot be colored by such a quandle, then it has only the p trivial colorings. It is important to note that Asami and Kuga only consider the total number of all p colorings without distinguishing between equivalent colorings, while we consider equivalence classes of p-colorings, or p-coloring classes. Also note that the proof of Theorem 2 will show that every non-trivial p-coloring of the standard braid projection of $T_{m, n}$ must use all p colors.

Figure 2: The action of ϕ on the $j^{\text {th }}$ color array of $T_{m, n}$.

Theorem 2. If p is prime and $T_{m, n}$ is p-colorable, then $T_{m, n}$ has only one nontrivial p-coloring class.

Proof. If $T_{m, n}$ is p-colorable, then by Theorem 1 can assume without loss of generality that we have m odd, n even, and $p \mid m$. Given a p-coloring of $T_{m, n}$ in the standard m-stand braid projection, let its $j^{\text {th }}$ color array be the element of $\left(\mathbb{Z}_{p}\right)^{m}$ whose $i^{\text {th }}$ component is the color of the $i^{\text {th }}$ strand of the braid representation of $T_{m, n}$ after j cycles. The map $\phi:\left(\mathbb{Z}_{p}\right)^{m} \rightarrow\left(\mathbb{Z}_{p}\right)^{m}$ defined by

$$
\phi\left(c_{0}, c_{1}, \ldots, c_{m-1}\right)=\left(2 c_{0}-c_{1}, 2 c_{0}-c_{2}, \ldots, 2 c_{0}-c_{m-1}, c_{0}\right)
$$

describes the transistion from the $j^{\text {th }}$ to the $(j+1)^{\text {st }}$ color array of α according the rules of p-colorability, as seen in Figure 1. Note that a p-coloring of $T_{m, n}$ is entirely determined by its initial color array, and that to have a proper p-coloring it is necessary and sufficient that ϕ^{n} fixes this initial color array.

Now since p divides the number m of braid strands in our projection of $T_{m, n}$ we can consider the $0^{\text {th }}$ color array that consists of the colors $0,1, \ldots, p-1$ listed in order $\frac{m}{p}$ times:

$$
C_{0}=(0,1, \ldots, p-2, p-1,0,1, \ldots, p-2, p-1, \ldots, p-2, p-1) .
$$

Under the action of ϕ, the $1^{\text {st }}$ color array is clearly

$$
\phi\left(C_{0}\right)=(p-1, p-2, \ldots, 1,0, p-1, p-2, \ldots, 1,0, \ldots, 1,0)
$$

and the $2^{\text {nd }}$ color array is

$$
\phi^{2}\left(C_{0}\right)=(0,1, \ldots, p-2, p-1,0,1, \ldots, p-2, p-1, \ldots, p-2, p-1)
$$

Since ϕ^{2} fixes C_{0} and n is even, we know that ϕ^{n} fixes C_{0} and thus the initial color array C_{0} induces a nontrivial p-coloring.

Note that the p-coloring constructed above has the property that its initial color array $c_{0}, c_{1}, c_{2}, \ldots, c_{m-1}$ has constant variance of 1 , since $c_{j+1}-c_{j}=1$ for all $0 \leq j \leq m$ (with indices $\bmod m$). It can be shown by elementary, but tedious, methods that if $T_{m, n}$ is a one-component link then any p-coloring of its standard m-strand braid projection will have constant variance (not necessarily
equal to 1), and that all such p-colorings are equivalent to the p-coloring constructed above. Thankfully, the reviewer for this paper suggested a much more elegant method of proving that up to equivalence there can be no more than one nontrivial p-coloring of $T_{m, n}$, as follows.

Seeking a contradiction, suppose that there are two non-equivalent nontrivial p-colorings $c_{1}, c_{2}, \ldots, c_{r}, d_{1}, d_{2}, \ldots, d_{r}$ of a projection of $T_{m, n}$ with strands $s_{1}, s_{2}, \ldots, s_{r}$. We will show that these colorings induce what we can think of as a $\mathbb{Z}_{p} \oplus \mathbb{Z}_{p}$-coloring $\left(c_{1}, d_{1}\right), \ldots\left(c_{r}, d_{r}\right)$ of the strands of the projection in the sense that we have an onto homomorphism from the knot group θ from $\pi_{1}\left(S^{3}-K\right)$ to the generalized Dihedral group $\mathcal{D}=\left\langle a, b \mid a^{2}=1, b \in \mathbb{Z}_{p} \oplus \mathbb{Z}_{p}, a b a b=1\right\rangle$.

In the notation above, and writing $b=\left(b_{1}, b_{2}\right)$, define $\theta\left(x_{i}\right)=a\left(b_{1}^{c_{i}}, b_{2}^{d_{i}}\right)$. We will show that θ is onto by showing that $a,\left(b_{1}, 1\right)$, and $\left(1, b_{2}\right)$ are in its image. By non-equivalence there must exist some i, j such that either $c_{i}=c=j$ but $d_{i} \neq d_{j}$, or $d_{i}=d_{j}$ but $c_{i} \neq c_{j}$. Without loss of generality we will assume the former. With this i, j it is a simple exercise to show that $\phi\left(x_{i} x_{j}\right)=\left(1, b_{2}^{d_{j}-d_{i}}\right)$. Since $d_{j}-d_{i} \neq 0$ and p is prime, some power of this element is $\left(1, b_{2}\right)$. Now since $c_{1}, c_{2}, \ldots, c_{r}$ is a nontrivial p-coloring there must exist some k such that $c_{i} \neq c_{k}$, and for this i, k we have $\phi\left(x_{i} x_{k}\right)=\left(b_{1}^{c_{k}-c_{i}}, b_{2}^{d_{k}-d_{i}}\right)$. The product of this element with $\left(1, b_{2}\right)^{d_{i}-d_{k}}$ is $\left(b_{1}^{c_{k}-c_{i}}, 1\right)$, and again since $c_{k}-c_{i} \neq 0$ and p is prime, some power of this is $\left(b_{1}, 1\right)$. We now see immediately that a is in the image of θ since $\theta\left(x_{i}\right)\left(b_{1}^{-c_{i}}, b_{2}^{-d_{i}}\right)=a$.

The existence of this onto map θ provides a contradiction to there being two non-equivalent p-colorings, as follows. It is well-known (see p. 58 of [5]) that $\pi_{1}\left(S^{3}-T_{m, n}\right)=\left\langle x, y \mid x^{m}=y^{n}\right\rangle$, and that the center Z of this group is generated by x^{m}. Since θ is onto and thus carries centers into centers, $\theta(Z)$ is contained in the center of \mathcal{D}, which is trivial since p is odd. Therefore $Z \in \operatorname{ker} \theta$, and thus the map θ factors through the group $\left\langle x, y \mid x^{m}=1, y^{m}=1\right\rangle$. This induces a map $\beta:\left\langle x, y \mid x^{m}=1, y^{m}=1\right\rangle \rightarrow \mathcal{D}$, which must be onto since θ is onto. But there can be no onto homomorphism from a free product of two cyclic groups to a group whose presentation requires at least three generators. Therefore there can be only one nontrivial p-coloring class for $T_{m, n}$, namely the one we constructed above.

Notice that the proof of Theorem 2 shows that any p-coloring of the standard minimal projection of a torus knot must use all p colors. In particular, this gives another proof that torus knots of the form $T_{p, 2}$ for p an odd prime satisfy the Kauffman-Harary conjecture (6.2 in [7]); such torus knots are alternating with determinant p, and the least number of colors needed to nontrivially color a minimal projection of $T_{p, 2}$ will be equal to the crossing number p.

The reviewer for this paper pointed out to the authors that another immediate consequence of our elementary result in Theorem 2 is that the first homology groups of certain q-fold branched cyclic covers of torus knot complements are cyclic. The requirement that this homology group be cyclic in the two-fold case has been suggested as a weaker hypothesis for the Kauffman-Harary conjecture (p. 7 of [1]). Given a torus knot $T_{m, n}$, let $\widehat{C}_{m, n}^{q}$ denote the q-fold branched cyclic cover of $S^{3}-T_{m, n}$ (see 8.18 in [5]).

Corollary 3. If $q=2+k m n$ for some nonnegative integer k, then the homology group $H_{1}\left(\widehat{C}_{m, n}^{q}\right)$ is cyclic.

Proof. By 14.8 in [5], $T_{m, n}$ is p-colorable for some prime p if and only if p divides $\left|H_{1}\left(\widehat{C}_{m, n}^{2}\right)\right|$. For each such prime p, Theorem 2 shows that there is only one nontrivial p-coloring class, which in turn guarantees that the 2 -fold branched cyclic cover of the knot complement contains only one subgroup of order p (see Section 3 of [11]). Since this is true for all primes p that divide $\left|H_{1}\left(\widehat{C}_{m, n}^{2}\right)\right|$, the result follows in the $q=2$ (i.e. $k=0$) case. The general result now follows from the fact that the q-fold coverings have period $m n$ (see 6.15 in [5]), i.e. $\widehat{C}_{m, n}^{q} \cong \widehat{C}_{m, n}^{q+k m n}$ for any nonnegative integer k.

The authors of this paper would like to thank the reviewer, who made extremely detailed comments and in addition suggested a more streamlined argument and a way to extend our original results (Corollary 3). This work was supported by NSF grant number NSF-DMS 0243845.

References

[1] M. Asaeda, J. Przytycki, and A. Sikora, Kauffman-Harary Conjecture holds for Montesinos Knots, Journal of Knot Theory and its Ramifications, Vol. 13, No. 4 (2004) 467-477.
[2] S. Asami and K. Kuga, Colorings of Torus Knots and their Twist-Spins by Alexander Quandles over Finite Fields, Technical Reports of Mathematical Science, Chiba University, Vol. 20 (2004).
[3] S. Asami and S. Satoh, An Infinite Family of Non-invertible Surfaces in 4-Space, Bull. London Math. Soc. 37, 285-296 (2005).
[4] K. Brownell, K. O'Neil, and L. Taalman, Counting m-coloring classes of knots and links, Pi Mu Epsilon Journal, Vol. 12, Number 5 (2006).
[5] G. Burde and H. Zieschang, Knots, de Gruyter Studies in Mathematics 5, de Gruyter, New York (1985).
[6] R. Butler, A. Cohen, M. Dalton, L. Louder, R. Rettberg, and A. Whitt, Explorations into Knot Theory: Colorability, University of Utah (2001).
[7] F. Harary and L.H. Kauffman, Knots and Graphs I - Arc Graphs and Colorings, Advances in Applied Mathematics 22, 312-337 (1999).
[8] W.B. Raymond Lickorish, An Introduction to Knot Theory, Springer-Verlag, New York (1997).
[9] C. Livingston, Knot Theory, The Mathematical Association of America, Washington DC (1993).
[10] K. Murasugi, Knot Theory and its Applications, Birkchäuser, Boston (1996).
[11] J.H. Przytycki, 3-Coloring and Other Elementary Invariants of Knots, arXiv:math/0608172v1, math.GT (2006).
[12] D. Rolfsen, Knots and Links, Publish or Perish, Inc., Houston (1976).
[13] Y. Yasinnik, p-Colorability of Torus Knots, Research Science Institute (2000).

[^0]: *Dept. of Mathematics and Statistics, James Madison University, MSC 1911, Harrisonburg, VA 22807; taal@math.jmu.edu.

