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Abstract

We classify by elementary methods the p-colorability of torus knots,

and prove that every p-colorable torus knot has exactly one nontrivial

p-coloring class. As a consequence, we note that the two-fold branched

cyclic cover of a torus knot complement has cyclic first homology group.

MR Subject Classifications: 57M27, 05C15

1 Introduction

Our first result is a theorem specifically determining the p-colorability of any
(m, n) torus knot. It has been previously shown that a (m, m− 1) torus knot is
always p-colorable for p equal to m or m− 1 depending on which is odd (see [6]
and [13]). Another proven result is that a (2, n) torus knot is always p-colorable
for p equal to n and a (3, n) torus knot is always 3-colorable if n is even [13]. A
result similar to ours was also stated as a lemma without proof in [3].

Our second result shows that any p-colorable (m, n) torus knot has only one
nontrivial p-coloring class. A general result investigating colorings of torus knots
by finite Alexander quandles appears in [2]. Our result is a special instance of
this result; however, we present a proof using only elementary techniques. p-
coloring classes have also previously been investigated in relationship to pretzel
knots by [4]. An immediate corollary of this result is that any nontrivial p-
coloring of the standard braid representation of Tm,n must use all p colors.
Distribution of colors in p-colorings of knots has been previously investigated
with the Kauffman-Harary Conjecture, which examines the distribution of colors
in a p-coloring of an alternating knot with prime determinant. Asaeda, Przytcki,
and Sikora prove the Harary-Kauffman Conjecture is true for pretzel knots and
Montesinos knots in [1]. Another immediate corollary is that the first homology
groups of certain branched cyclic covers of torus knot complements (see [5], [11])
are cyclic.
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2 Notation

Given a prime p > 2 and a projection of a knot K with strands s1, s2, . . . , sr, a
p-coloring is an assignment c1, c2, . . . cr of elements of Zp to the strands of the
projection that satisfies the condition that at each crossing where si, sj are the
undercrossing strands and sk is the overcrossing strand, ci + cj −2ck = 0 mod p.
A p-coloring is said to be nontrivial if at least two distinct “colors” in Zp are used.
p-colorability is invariant under Reidemeister moves and is thus a knot invariant,
so a knot K is p-colorable if its projections admit non-trivial p-colorings.

Equivalently, a knot K is p-colorable if there exists an onto homomorphism
from the knot group π1(S

3 − K) of K to the dihedral group

D2p = 〈a, b | a2 = 1, bp = 1, abab = 1〉.

The knot group G can be expressed via the Wirtinger presentation, as fol-
lows. Given a projection of K, define loops x1, x2, . . . , xr around the strands
s1, s2, . . . , sr, respectively, following the right hand rule. At each crossing where
si terminates, sj originates, and sk is the overcrossing strand we have a relation
Rj that is either of the form xj = x−1

k xixk or xj = xkxix
−1
k , depending on

whether the sign of the crossing is positive or negative (see Section D of chapter
3 of [12]). With this notation, the Wirtinger presentation for the knot group of
K is:

π1(S
3 − K) = 〈x1, x2, . . . , xr | R1, R2, . . . , Rr〉.

It is a simple exercise to prove that an assignment of colors c1, c2, . . . cr ∈ Zp is a
proper p-coloring of a projection of K if and only if the map θ : π1(S

3−K) → D2p

defined by θ(xi) = abc(si) is an onto homomorphism (see p.122 of [8]).
Two p-colorings c1, c2, . . . , cr and d1, d2, . . . , dr of a projection of K are said

to be equivalent, or in the same p-coloring class if for all 1 ≤ i, j ≤ r, ci = cj

if and only if di = dj ; in this case we say that the two p-colorings differ only
by a permutation of the colors. This definition of p-coloring classes corresponds
directly to the mod p rank discussed in chapter 3 of [9].

3 p-Colorability of Torus Knots

Let Tm,n represent the torus knot characterized by the number of times m that
it circles around the meridian of the torus and the number of times n that it
circles around the longitude of the torus. Tm,n has one component if and only
if m and n are relatively prime. It is well-known that every knot is the closure
of some braid (see chapter 3 of [9]). For example, the trefoil knot T3,2 is the
closure of the braid (σ1σ2)

2 shown in Figure ??, where σi represents a crossing
where string i − 1 crosses over string i. In general, the torus knot Tm,n can be
realized as the closure of the braid word (σ1σ2 · · ·σm−2σm−1)

n.

Since Tm,n is equivalent to Tn,m, the following theorem completely charac-
terizes the p-colorability of torus knots. Note that if Tm,n has one component
then m and n cannot both be even. Results similar to those in Theorem 1 were
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Figure 1: The braid (σ1σ2)
2 and its closure T3,2.

stated without proof by Asami and Satoh in [3]. We present an elementary
proof here.

Theorem 1. Suppose Tm,n is a torus knot and p is prime.

i) If m and n are both odd, then Tm,n is not p-colorable.

ii) If m is odd and n is even, then Tm,n is p-colorable if and only if p|m.

Proof. If p is prime, then a knot K is p-colorable if and only if p divides det(K)
(see chapter 3 of [9]). We will show that the determinant of Tm,n is

det(Tm,n) =

{
1, if m and n are both odd

m, if m is odd and n is even.

By [10] we have det(K) = |∆K(−1)|, where ∆K(t) is the Alexander polynomial
of K. The Alexander polynomial for Tm,n is given by (see part C of chapter 9
of [5])

∆Tm,n
(t) =

(tmn − 1)(t − 1)

(tm − 1)(tn − 1)
.

Therefore if m and n are both odd, we have ∆Tm,n
(−1) = (−2)(−2)

(−2)(−2) = 1.

If m is odd and n is even, then by L’Hôpital’s rule we have ∆Tm,n
(−1) =

(mn+1)+mn−1
(m+n)−m+n

= m.

4 p-Coloring Classes of Torus Knots

Our second theorem is a special case of a result found by Asami and Kuga in
[2]. They prove that if a knot Tm,n can be p-colored using a finite Alexander
quandle, it has a total of p2 trivial and non-trivial colorings. If Tm,n cannot
be colored by such a quandle, then it has only the p trivial colorings. It is
important to note that Asami and Kuga only consider the total number of all p-
colorings without distinguishing between equivalent colorings, while we consider
equivalence classes of p-colorings, or p-coloring classes. Also note that the proof
of Theorem 2 will show that every non-trivial p-coloring of the standard braid
projection of Tm,n must use all p colors.
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Figure 2: The action of φ on the jth color array of Tm,n.

Theorem 2. If p is prime and Tm,n is p-colorable, then Tm,n has only one
nontrivial p-coloring class.

Proof. If Tm,n is p-colorable, then by Theorem 1 can assume without loss of
generality that we have m odd, n even, and p|m. Given a p-coloring of Tm,n

in the standard m-stand braid projection, let its jth color array be the ele-
ment of (Zp)

m whose ith component is the color of the ith strand of the braid
representation of Tm,n after j cycles. The map φ : (Zp)

m → (Zp)
m defined by

φ(c0, c1, . . . , cm−1) = (2c0 − c1, 2c0 − c2, . . . , 2c0 − cm−1, c0)

describes the transistion from the jth to the (j + 1)st color array of α according
the rules of p-colorability, as seen in Figure 1. Note that a p-coloring of Tm,n is
entirely determined by its initial color array, and that to have a proper p-coloring
it is necessary and sufficient that φn fixes this initial color array.

Now since p divides the number m of braid strands in our projection of Tm,n

we can consider the 0th color array that consists of the colors 0, 1, . . . , p − 1
listed in order m

p
times:

C0 = (0, 1, . . . , p − 2, p− 1, 0, 1, . . . , p − 2, p− 1, . . . , p − 2, p− 1).

Under the action of φ, the 1st color array is clearly

φ(C0) = (p − 1, p− 2, . . . , 1, 0, p − 1, p − 2, . . . , 1, 0, . . . , 1, 0),

and the 2nd color array is

φ2(C0) = (0, 1, . . . , p − 2, p − 1, 0, 1, . . . , p − 2, p − 1, . . . , p − 2, p − 1).

Since φ2 fixes C0 and n is even, we know that φn fixes C0 and thus the initial
color array C0 induces a nontrivial p-coloring.

Note that the p-coloring constructed above has the property that its initial
color array c0, c1, c2, . . . , cm−1 has constant variance of 1, since cj+1 − cj = 1
for all 0 ≤ j ≤ m (with indices mod m). It can be shown by elementary, but
tedious, methods that if Tm,n is a one-component link then any p-coloring of its
standard m-strand braid projection will have constant variance (not necessarily
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equal to 1), and that all such p-colorings are equivalent to the p-coloring con-
structed above. Thankfully, the reviewer for this paper suggested a much more
elegant method of proving that up to equivalence there can be no more than
one nontrivial p-coloring of Tm,n, as follows.

Seeking a contradiction, suppose that there are two non-equivalent nontriv-
ial p-colorings c1, c2, . . . , cr, d1, d2, . . . , dr of a projection of Tm,n with strands
s1, s2, . . . , sr. We will show that these colorings induce what we can think of as a
Zp ⊕Zp-coloring (c1, d1), . . . (cr, dr) of the strands of the projection in the sense
that we have an onto homomorphism from the knot group θ from π1(S

3 − K)
to the generalized Dihedral group D = 〈a, b | a2 = 1, b ∈ Zp ⊕ Zp, abab = 1〉.

In the notation above, and writing b = (b1, b2), define θ(xi) = a(bci

1 , bdi

2 ). We
will show that θ is onto by showing that a, (b1, 1), and (1, b2) are in its image.
By non-equivalence there must exist some i, j such that either ci = c = j but
di 6= dj , or di = dj but ci 6= cj . Without loss of generality we will assume the

former. With this i, j it is a simple exercise to show that φ(xixj) = (1, b
dj−di

2 ).
Since dj − di 6= 0 and p is prime, some power of this element is (1, b2). Now
since c1, c2, . . . , cr is a nontrivial p-coloring there must exist some k such that
ci 6= ck, and for this i, k we have φ(xixk) = (bck−ci

1 , bdk−di

2 ). The product of
this element with (1, b2)

di−dk is (bck−ci

1 , 1), and again since ck − ci 6= 0 and p is
prime, some power of this is (b1, 1). We now see immediately that a is in the
image of θ since θ(xi)(b

−ci

1 , b−di

2 ) = a.
The existence of this onto map θ provides a contradiction to there being

two non-equivalent p-colorings, as follows. It is well-known (see p.58 of [5])
that π1(S

3 − Tm,n) = 〈x, y | xm = yn〉, and that the center Z of this group is
generated by xm. Since θ is onto and thus carries centers into centers, θ(Z) is
contained in the center of D, which is trivial since p is odd. Therefore Z ∈ ker θ,
and thus the map θ factors through the group 〈x, y | xm = 1, ym = 1〉. This
induces a map β : 〈x, y | xm = 1, ym = 1〉 → D, which must be onto since θ

is onto. But there can be no onto homomorphism from a free product of two
cyclic groups to a group whose presentation requires at least three generators.
Therefore there can be only one nontrivial p-coloring class for Tm,n, namely the
one we constructed above.

Notice that the proof of Theorem 2 shows that any p-coloring of the standard
minimal projection of a torus knot must use all p colors. In particular, this gives
another proof that torus knots of the form Tp,2 for p an odd prime satisfy the
Kauffman-Harary conjecture (6.2 in [7]); such torus knots are alternating with
determinant p, and the least number of colors needed to nontrivially color a
minimal projection of Tp,2 will be equal to the crossing number p.

The reviewer for this paper pointed out to the authors that another immedi-
ate consequence of our elementary result in Theorem 2 is that the first homology
groups of certain q-fold branched cyclic covers of torus knot complements are
cyclic. The requirement that this homology group be cyclic in the two-fold case
has been suggested as a weaker hypothesis for the Kauffman-Harary conjecture
(p.7 of [1]). Given a torus knot Tm,n, let Ĉq

m,n denote the q-fold branched cyclic
cover of S3 − Tm,n (see 8.18 in [5]).
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Corollary 3. If q = 2+kmn for some nonnegative integer k, then the homology
group H1(Ĉ

q
m,n) is cyclic.

Proof. By 14.8 in [5], Tm,n is p-colorable for some prime p if and only if p

divides |H1(Ĉ
2
m,n)|. For each such prime p, Theorem 2 shows that there is

only one nontrivial p-coloring class, which in turn guarantees that the 2-fold
branched cyclic cover of the knot complement contains only one subgroup of
order p (see Section 3 of [11]). Since this is true for all primes p that divide

|H1(Ĉ
2
m,n)|, the result follows in the q = 2 (i.e. k = 0) case. The general result

now follows from the fact that the q-fold coverings have period mn (see 6.15 in

[5]), i.e. Ĉq
m,n

∼= Ĉq+kmn
m,n for any nonnegative integer k.

The authors of this paper would like to thank the reviewer, who made ex-
tremely detailed comments and in addition suggested a more streamlined ar-
gument and a way to extend our original results (Corollary 3). This work was
supported by NSF grant number NSF-DMS 0243845.
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