
Simplicity is not Simple:

Tessellations and Modular Archi-
tecture

The 2000 MathFest in Los Angeles was an extrava-
ganza of mathematical talks, short courses and ex-
hibits. By the third day, we needed a break from
math and decided to check out the city. Of course,
after being immersed in mathematics for so long, we
noticed it everywhere. In particular, while walking
down a street in a remote neighborhood, we happened
upon a rhombic dodecahedron in a shop window. It
was a hanging lamp, in a gallery full of fantastical
hip furniture. We went in, fully expecting that our
shabby clothing would result in a cool reception (we
later discovered that the chairs sold for $3000 apiece).
Much to our surprise, we were shown enthusiastically
around the shop by a man who turned out to be the
designer, Gregg Fleishman. He took us into his work-
shop, and showed us how he had been using rhombic
dodecahedra to develop a modular building system.
Despite his claims that he was not very good at math,
it became clear as we talked that mathematics was
the foundation for much of his work.

In this article, we’ll introduce you to Fleishman’s
work, modular architecture more generally, and talk
about how various architectural considerations can
be described in mathematical terms. Along the way,
we’ll discuss and prove some basic facts about poly-
hedra and tessellations.

What is Modular Architecture?

Modular Architecture is any building system in which
a few standardized components used to build a struc-
ture on a scale much larger than the components. Ide-
ally, the parts should be easy to duplicate and simple
to assemble by one person. To get a sense of what is
meant by this, consider first the mathematically sim-
pler problem faced by a company that wants to break
up a large workroom into smaller identical worksta-
tions. Generally, rather than having a construction
crew come in and build walls, the company will buy
a set of identical dividers and connectors which fit
together to create the cubicles. They buy as many
as they need to complete their project, and the parts
can be assembled without specialized crews.

Mathematically, the problem involved is one of
breaking up a planar region into subregions using a
finite number of identical pieces. These subregions
should fit together so that they cover the whole plane
without overlapping, except on edges. Such a method
of subdivision is called a tiling or a tessellation of the

Euclidean plane.

There are many kinds of tessellations, from the
one given by simple square bathroom tiles to tes-
sellations involving lizards or demons in the artwork
of M. C. Escher to the non-periodic Penrose tilings
of the plane. The simplest kinds of planar tessella-
tions are those like the bathroom tiles where the sub-
regions are identical, regular, convex polygons. In
these tessellations, all angles and sides are identical.
Architecturally, this means that if you were to use
such a tessellation to construct office workstations,
you would only need one basic type of panel and one
basic type of connector. The resulting cubicles would
all be equal sized, and arranged in a regular pattern.

Planar tessellations and Floor Plans

The fact that squares and rectangles tessellate the
plane explains why they are used so often in archi-
tecture. Using squares or rectangles, floor plans can
be constructed that have no wasted space between
rooms. Of the regular polygons (convex polygons
where all sides have equal length and all angles are
equal) there are only three that tessellate the plane:
triangles, squares and hexagons (Figure 1).

Figure 1: The three regular tessellations.

It is not hard to prove that these are the only three
tessellating regular polygons. Th following proof is
taken from Keith Critchlow’s book Order in Space,
The Viking Press, 1970.

Proof. Let P be a regular polygon with n > 2 sides.
Then each interior angle of P measures α = 180− 360

n
degrees. If P tessellates the plane then each vertex of
the tessellation will be surrounded by k(n) = 360

α =
2 + 4

n−2 polygons. It now suffices to determine which
integers n > 2 will make k(n) an integer. If n > 7
then 0 < 4

n−2 < 1 and thus k(n) could not be an
integer. Checking the remaining possible values for n
we see that k(3) = 6, k(4) = 4, k(5) = 2 4

3 , and k(6) =
3. Thus only 3-, 4-, and 6-sided regular polygons can
tessellate the plane.
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Although squares are more often used than hex-
agons in architecture today, the hexagon has a math-
ematical advantage over both the square and the tri-
angle. A hexagonal tessellation has the most efficient
perimeter-to-area ratio, and thus will require the least
amount of wall material per square foot of floor space.

Proof. A square with side length E has area E2 and
perimeter 4E, so the perimeter of a square with area
A is 4

√
A. An (equilateral) triangle with side length

E has area
√

3
4 E

2, so a triangle with area A will have
perimeter 3E = 2(3)

3
4
√
A ≈ 4.559

√
A. Finally, a

hexagon with side length E has area A = 3
√

3
2 E2 and

thus perimeter 6E = 2(2)
1
2 (3)

1
4
√
A ≈ 3.722

√
A.

For example, a square room enclosing 100 square
feet requires a perimeter of 40 feet. A triangular room
with the same square footage would need a bit more
perimeter, about 45.59 feet. The most efficient floor
unit is the hexagon, which requires a perimeter of
only about 37.22 feet to enclose 100 square feet of
area.

A workspace which is closer to a circle in shape
also wastes less space in inaccessible corners. An of-
fice worker sitting in a swivel chair in the middle of
an office can reach everything within a circular area
whose radius is that worker’s reach. A worker in a
hexagonal office can more easily reach everything in
the workspace than a worker in a square or rectan-
gular cubicle. Further, hexagonal workstations can
be arranged to fill circular or odd-shaped spaces. For
all of these reasons, some companies are turning to
hexagonal cubicle systems (Figure 2). The Silicon
Valley company Nokia used hexagonal cubicles from
Herman Miller, Inc. to fit eleven workstations and a
couch area in a circular space where only six to eight
rectangular workstations could have fit. Employees
feel that they have more room and a more flowing
office space with this hexagonal system, according to
the report Resolve connects with Nokia on the Her-
man Miller, Inc., website at www.hermanmiller.com/
us/pdfs/resolve/nokia cs.pdf, 2000.

** missing figure **

Figure 2: A hexagonal office cubicle system by Her-
man Miller, Inc.

Despite the mathematical efficiency of hexagons,
in real life they are often not as convenient as square
or rectangular floor shapes. One problem is the dif-
ficulty in placing hallways and larger classrooms in
hexagonal systems. For example, one could build a

high school with identical hexagonal classrooms that
tile very efficiently, but hallways and larger rooms
like cafeterias or libraries could be difficult to place
in such a floor plan (see William Blackwell’s text Ge-
ometry in Architecture, John Wiley & Sons, 1984).
Another problem is that so much architecture is al-
ready rectangular that other shapes often don’t fit as
well in the available spaces.

Modular Buildings

Office cubicle systems are a two-dimensional version
of modular building systems. Gregg Fleishman is in-
terested in creating entire buildings, not just floor
plans within existing buildings. This means he is
interested in ways of subdividing three-dimensional
space. Designing a house, for instance, means creat-
ing an enclosed space and separating off rooms within
that possibly multi-floored structure. The goal is still
to do this with only a few basic parts.

Consider how you could build a backyard club-
house. If you had five identical square pieces of ply-
wood, you could build a simple cube-shaped club-
house with a dirt floor. Rectangular prisms (“boxes”)
are the most common basic solid used in architecture.
Cubes are the simplest of them in that all the faces
are equivalent. Hence even a couple of grade school
kids can build one. A solid where every face is the
same regular polygon and all vertices (corners) are
alike is called a regular or Platonic solid. There are
exactly five of these: the tetrahedron, the cube, the
octahedron, the dodecahedron and the icosahedron.
This can be proved in a few ways. Perhaps the pret-
tiest uses a number called the Euler characteristic.

Proof. Given a surface, S, a decomposition of S is a
way of cutting S up into pieces so that each piece can
be flattened into a planar region with no holes. The
pieces are called the faces of the decomposition, the
lines along which the faces were cut apart are called
the edges, and the corners where edges connect are
called the vertices.

The Euler characteristic of S, denoted χ(S), is
then given by the formula χ(S) = F −E + V , where
F is the number of faces, E is the number of edges,
and V is the number of vertices in any decomposition
of the surface (see figure ??). It is a theorem that this
number does not depend on how the surface is decom-
posed, and also doesn’t change if you stretch or bend
the surface (the Euler Characteristic is thus an ex-
ample of a topological invariant). For a proof of this,
see pp. 29–32 of Algebraic Topology: An Introduc-
tion, W.S. Massey, Graduate Texts in Mathematics
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56, Springer-Verlag 1967.

Every Platonic solid gives a decomposition of the
sphere, which you can see by imagining inflating the
solid until its faces bulge out to a sphere. Using
the tetrahedron, for example, we get a decomposi-
tion with four faces, twelve edges and eight vertices,
so we know that χ(sphere)= 4 − 12 + 8 = 2. So we
know that for any Platonic solid, we have the equa-
tion F − E + V = 2.

Now we can use the defining properties of Platonic
solids to show there can only be five of them. Since
the faces of a Platonic solid must be regular n-sided
polygons for some n ≥ 3, we know that the total
number of face-edge intersections must be n times
the number of faces, since each face meets n edges.
Also, each edge meets two faces, so we get a second
equation nF = 2E. Similarly, since each vertex is
regular, each vertex meets the same number of edges,
call it m, while each edge meets two vertices. Thus
we get a third equation coming from counting the
number of edge-vertex intersections, mV = 2E. Each
vertex must meet at least 3 edges, so m is also at least
3.

Solving for F and V in terms of E in the sec-
ond and third equations and plugging into the first
equation, we obtain:

2E
n
− E +

2E
m

= 2.

Rearranging this, we get:

1
n

+
1
m

=
2
E

+
1
2
.

This tells us that 1/n + 1/m > 1/2. Since n and m
must each be at least 3, this gives us five possibilities.
The first, n=3 and m=3, gives a solid in which three
(since m=3) equilateral triangles (since n=3) meet at
each vertex, that is, the tetrahedron. When n=3 and
m=4, we get the octahedron, n=3 and m=5, gives
the icosahedron, n=4 and m=3 gives the cube, and
finally, n=5 and m=3, gives the dodecahedron.

If cubes and rectangular prisms are so easy to
build with and so common in architecture, what is the
motivation for exploring different systems? We asked
Mr. Fleishman about this, who explained, “Cubes
are useful, they are part of the solution I have ar-
rived at. I am not against the cube at all. But it
has drawbacks. First, cubes have a low volume to
surface-area ratio. Of all three-dimensional shapes,
the sphere has the highest. The closer you get to ap-
proximating a sphere, the better structural economy
you have.” This is akin to the perimeter to area issue

for cubicles. An ideal structure would enclose a large
amount of space with a small amount of building ma-
terial.

“Another issue is the shape of the space. If you
use other shapes, like the rhombic dodecahedron, you
can get a higher and more interesting ceiling and roof.
Finally, the closer a building is to spherical, the better
it is able to withstand high winds and other weather.”

These types of considerations led modular build-
ing pioneer Buckminster Fuller to start experiment-
ing with geodesic domes in the 1940’s. “Fuller gen-
erally started with the icosahedron and then sub-
divided each face into smaller triangles,” explained
Fleishman. “Of course, the object that results is
no longer a Platonic solid, and can be difficult to
build. You have to use a great number of rods of var-
ious lengths that intersect at various angles. Building
large domes requires using a computer to keep track
of where the different length rods go.” Domes (large
ones) have nevertheless been popular. Two of the
best known examples are the Epcot Center at Disney-
world and the NSF Amundsen-Scott South Pole Sta-
tion (to see pictures of these architectural domes, visit
www.disneyworld.go.com/ waltdisneyworld/parksan-
dmore/attractions and www.stanford.edu/group/zar-
elab/antartica.slide21.html).

Fleishman’s personal goals have led him to exper-
iment with different types of modular building sys-
tems. “One of my goals has always been to deal with
a way of building the house, and I spent a long time
on dome design. Geodesic dome architecture has to
do with building a frame, then covering it, but cov-
ering the frame is frequently difficult. Also, a sphere
is one object, and it is difficult to connect to others
like it, so to make a large house, the only choice is to
make a large sphere, and then you still have all of the
interior walls to construct. In residential structures I
have found it makes sense to go to a panel structure.”
Thus Fleishman has been working on creating a sys-
tem of modular panels which can attach to create a
variety of buildings with several joined smaller rooms
rather than a single large dome.

Where does this leave us mathematically? Well,
we are still hoping to create a structure using only
a few different types of simple pieces, so we want
to use Platonic solids if possible, or at least shapes
with some of the same regularity properties, like be-
ing built of regular polygons, or having all faces the
same. In addition, we now want to be able to connect
rooms to each other in a space-filling way. So what we
need is a three-dimensional version of a tessellation
involving regular or semi-regular solids.
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Space-filling solids

This leads us back to cubes and rectangular prisms.
There is a reason besides simplicity that they are the
most common solid used in architecture: they tes-
sellate 3-space. That is, a collection of rectangular
prisms of the same size can be arranged to fill 3-
dimensional space so that there no gaps in between.
Although these are the most common architectural
building blocks, they are not the only solids that fill
space. However, they are the only regular polyhedron
which does (top of Figure 3). Thus to find other poly-
hedra that tessellate 3-space, we need to relax the
regularity conditions. There are a couple of ways to
do this. Either you can relax the condition that the
faces all be the same regular polygons, or you can
require the faces to be identical, but allow them not
to be regular polygons.

The first possibility leads us to Archimedean solids:
polyhedra whose faces are regular polygons (possibly
of more than one variety) where every vertex is identi-
cal. There are thirteen Archimedean polyhedra, and
of the thirteen the only one that fills 3-space is the
truncated octahedron (bottom left of Figure 3). See
Alan Holden’s book Shapes, Space, and Symmetry,
Columbia University Press, 1971.

If we replace the vertices of an Archimedean poly-
hedron by faces and replace the faces by vertices we
get the Archimedean dual of the polyhedron. This
gives us the second possibility; the faces will be iden-
tical, but they may not be regular polygons. Of
the thirteen Archimedean duals, only one tessellates
three space: the rhombic dodecahedron (bottom right
of Figure 3). See Order in Space, Keith Critchlow,
The Viking Press, 1970.

In general, there are only eight space-filling poly-
hedra, three of which are described above. Of these
eight, the truncated octahedron (a polyhedron with
six square faces and eight hexagonal faces) fills space
most efficiently, i.e. has the most volume for the least
surface area. The rhombic dodecahedron (a twelve-
sided polyhedron whose faces are diamonds) is the
second most efficient. The cube ranks a measly sixth
out of eight in surface area to volume efficiency (rank-
ings can be found in Critchlow’s Order in Space, The
Viking Press, 1980). By manipulating surface area
and volume formulas we can prove that the truncated
octahedra is slightly more efficient than the rhombic
dodecahedron and significantly more efficient than
the cube.

Proof. The surface area formula for each of these
solids will be some multiple of the square E2 of the

Figure 3: The only regular polyhedron that tessel-
lates 3-space is the cube. The only Archimedean
polyhedron that fills space is the truncated oc-
tahedron (bottom left). The only space-filling
Archimedean dual is the rhombic dodecahedron (bot-
tom right).

edge length, and the volume formula will be some
multiple of E3. Thus the function writing surface
area in terms of volume will be of the form SA(V ) =
αV

2
3 for some constant α. Table 1 lists the volume

and surface areas for the cube, rhombic dodecahedron
(R.D.) and truncated octahedron (T.O.) in terms of
their edge length E, and an approximate value for
the associated coefficient α.

Table 1: Volume and surface area formulae for three
space-filling solids. Smaller values of α indicate more
efficient space-filling.

Solid Volume Surface Area ≈ α
Cube E3 6E2 6.0000
R.D. 16

9

√
3E3 8

√
2E2 5.3454

T.O. 8
√

2E3 (6 + 12
√

3)E2 5.3147

For example, a cube-shaped room enclosing 1000
cubic feet would have an edge length of 10 cubic feet
and a surface area of αV

2
3 = 6(100) = 600 square

feet. To enclose the same volume with a rhombic do-
decahedron we would only need about 534.54 square
feet of surface area (since α = 5.3454). The most ef-
ficient space-filler, the truncated octahedron, can fill
1000 cubic feet of volume with a surface area of only
531.47 square feet. Note that the rhombic dodeca-
hedron is nearly as efficient as the truncated octahe-
dron, but the cube is quite inefficient in comparison.
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Further Considerations

Fleishman has developed two modular building sys-
tems: one based on the rhombic dodecahedron and
one based on a semi-regular tiling using rhombicuboc-
tahedrons, cubes and tetrahedrons. “The rhombic
dodecahedron is a nice shape because it involves stan-
dard angles and lengths. The diagonals of the faces
have lengths in the ratio of 1 :

√
2, the same as the

ratio of the length of the side of a square to its di-
agonal. The dihedral angles (angles between faces)
are 120 degrees. This makes it easier for lay people
to machine the parts and build the structures.” Com-
pare this to the truncated octahedron, whose dihedral
angles are approximately 125 degrees 16 minutes and
109 degrees 29 minutes. Because the dihedral angles
of the rhombic dodecahedron are all equal and be-
cause each face has an even number of edges, Fleish-
man was able to develop a tab and slot connection
system. Since the panels themselves interlock in this
system (see picture), it eliminates need for a separate
connector system.

The system involving the tetrahedron, cube, and
rhombicuboctahedron is based on the rhombic do-
decahedron system. This tiling of space is achieved
by truncating the vertices of the rhombic dodecahe-
drons. We asked Fleishman how these systems com-
pare to each other. “The advantages of this system
over the rhombic dodecahedron system are that in-
stead of the large diamond panel, which most likely
needs to be cast or built up in some manner, there
are square and rectangular panels, which are easier to
cut from stock material. The variety of shapes and
ability to rescale the components also permits a wider
variety of module, or, basically, room sizes. However,
the system also has the disadvantage of having more
component parts and not creating as stable an exte-
rior skin as the rhombic dodecahedron system.” At
the cost of simplicity, Fleishman has also designed
a three way panel connection system for both ge-
ometries so that interior walls could be built with
the same panels as the walls. Fleishman never stops
searching for better solutions; the conversations we
had with him while writing this article led him to
reconsider the truncated octahedron as a basic unit.
He is now working on a new system based on that
shape.

Fleishman wants people to be able to build with
his panels without extensive training. “Making a
good system from only a few pieces which are not
too hard to machine or build is quite difficult,” says
Fleishman, “Simplicity is not simple.” “In the end, in
spite of its complex appearnce which has perhaps pre-
vented others from exploring its potential, the math

involved in the rhombic dodecahedron system is very
simple. It is amazing what you can do with simple
math.”

Housing for the World

We had a great time playing with Fleishman’s small-
scale building models, and told him we thought they
would make great math toys, and he said he’d be
willing to make some if there was interest. But when
we asked him how he envisioned his modular build-
ings being used, he had a much more revolutionary
plan. “The plywood panel house is lacking insulation
and waterproofing, but it is very easy to assemble
and has a lot of potential for variety. My idea is that
it has the perfect form for creating low-cost housing
in emerging economies. The panel structures could
be erected by crews with minimal training to provide
interior structure. Exterior surfacing and finishing,
like insulation, could be done using indigenous mate-
rials and techniques. These structures could provide
a global solution to the housing problem.”

For Further Reading

Pictures of Gregg Fleishman’s work and the his-
tory of the development of his modular building sys-
tems can be found at www.greggfleishman.com. For
more information about polyhedra, see the following
websites: www.physics.orst.edu/bulatov/polyhedra,
www.ics.uci.edu/eppstein/junkyard/tiling.html, and
polytopes.wolfram.com.
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