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Abstract. Spiral knots are a generalization of torus knots we define by a
certain periodic closed braid representation. For spiral knots with prime power
period, we calculate their genus, bound their crossing number, and bound their
m-alternating excess.

1. Introduction

Torus knots are a well-understood class of knots. Among other properties, their

crossing number, closed braid representations, normalized Alexander polynomial

degrees, and genera are all known. In this paper, we define a class of knots that

includes torus knots, and attempt to answer questions regarding all these properties

for this larger category.

We will use the standard notation for braid words when describing open braids

on n strands, where σi denotes the ith strand crossing over the (i + 1)st strand

(i = 1, 2, . . . , n − 1). The defining relations in the corresponding braid group are

the Artin relations σiσj = σjσi for |i − j| > 1 and σiσi+1σi = σi+1σiσi+1 for

1 ≤ i ≤ n − 1. On closed braids, we have the two additional moves of conjugation,

w 7→ σǫ
i wσ−ǫ

i , and stabilization, w ↔ wσǫ
n (where σ±ǫ

n does not occur in w). A

well-known result of Alexander is that every knot has a closed braid representation,

and a consequence of Markov’s Theorem is that the braid words of two closed-braid

representations of the same knot can be related by a sequence of the above four

moves (together with the usual reduction σǫ
i σ

−ǫ
i ↔ 1).

A knot projection is m-alternating if its overcrossings and undercrossings alter-

nate in groups of m as one travels around the projection. Every knot admits a

2-alternating projection [2]. The m-alternating excess of a knot is the difference

between the minimum number of crossings in any m-alternating projection of the

knot and its crossing number. A torus knot Tp,q admits a braid word of the form
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(σ1σ2 . . . σp−1)
q; it can be thought of as a periodic knot with period q and trivial

quotient. In this paper, we study knots which admit braid words of the above form

but which allow exponents of either 1 or −1 on the σi; we call these knots spiral

knots . In Section 2, we introduce the notion of spiral links and show that, like torus

links, they have one component iff gcd(p, q) = 1. In Section 3, we use the second

Murasugi condition on the Alexander polynomial of spiral knots to both calculate

their genus and to bound their crossing number in the case that the period of the

knot is a prime power. In Section 4, we compute the p − 1 and q − 1 alternating

excesses of (p, q) torus knots, find necessary and sufficient conditions for a spiral

knot projection to be m-alternating, and find an upper bound for the m-alternating

excess of certain spiral knots.

2. Spiral Knots

A (p, q) torus knot admits a p-strand braid word of the form wq where w =

σ1σ2 . . . σp−1. We begin by exploring what happens if we focus only on the number

of strands, the number of crossings, and the periodic nature of the braid word.

Given a braid word w = xi1xi2 . . . xin
, where each xil

is some σ±1
j , we denote its

word length by |w| = n. For any integers n ≥ 2 and k ≥ 1, an S-link of type (n, k)

is a link that admits an n-strand braid word of the form wk with |w| = n − 1.

For example, the braid representations of two S-links of type (5, 2) are shown in

Figures 1 and 2.
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Figure 2. S-link (σ1σ2σ
−1
4 σ−1

3 )2

We will call an S-link with one component an S-knot . We now show that every

S-knot of type (n, k) must have gcd(n, k) = 1 and an underlying S-knot of type
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(n, 1) that is trivial. This will be crucial in our later investigations of the Alexander

polynomials of S-knots.

Theorem 1. An S-link of type (n, 1) has one component if and only if it is the

unknot.

Proof. Let L0 be an S-link of type (n, 1), let w be its corresponding braid word,

and let µ be the permutation associated to w. If L0 has one component, then µ

is an n-cycle. In this case, each σi or its inverse must occur exactly once among

the n − 1 letters of w, for if not, then µ would decompose into disjoint cycles,

each of which would correspond to a distinct component of L0. Now repeated

stabilization reduces w to the identity. Conversely, if L0 is the unknot, then it has

one component. �

Theorem 2. An S-link of type (n, k) has one component if and only if the corre-

sponding S-link of type (n, 1) has one component and gcd (n, k) = 1.

Proof. Assume L is an S-link of type (n, k) and let L0 denote the corresponding

S-link of type (n, 1). Notice L is a periodic knot with period k, quotient L0, and

linking number n. If L0 is a knot, then L has gcd (n, k) components by [3]. Thus, if

L0 has one component and gcd (n, k) = 1, then L has one component. Conversely,

if L has one component, then L0 must also, and therefore gcd (n, k) is equal to the

number of components of L, i.e. gcd (n, k) = 1. �

It happens that every S-knot admits a braid word similar to the standard form

for torus knots.

Theorem 3. Let n ≥ 2, let k ≥ 1. Every S-knot of type (n, k) admits a braid word

of the form (σǫ1
1 σǫ2

2 . . . σ
ǫn−1

n−1 )k, where each ǫi = ±1. If ǫ = (ǫ1, ǫ2, . . . ǫn−1), we will

call this the spiral knot S(n, k, ǫ).

Proof. Let K be an S-knot of type (n, k), let K0 be the corresponding unknot of

type (n, 1), and let wk and w, respectively, be their corresponding braid words. For

each i, let xi = σ±1
i . By the proof of Theorem 1, each xi occurs exactly once in

w for i = 1, 2, . . . , n − 1 . By conjugating by the appropriate prefix of w, we can

assume that w begins with x1.
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Let 1 ≤ r ≤ n−3. If u and v are any words in xr+2, xr+3, . . . , xn−1, we assert that

the word (x1x2 . . . xruxr+1v)k is Markov equivalent to the word (x1x2 . . . xrxr+1vu)k.

To see this, notice that applying commuting Artin relations to (x1x2 . . . xruxr+1v)k

yields (ux1x2 . . . xrxr+1v)k, and then conjugating by u yields (x1x2 . . . xrxr+1vu)k.

Repeated application of this result yields the braid word (x1x2 . . . xn−1)
k for K, as

desired. �

Note that we have shown that any knot K that admits an n-strand braid word

of the form wk with |w| = n− 1 is a spiral knot. Spiral knots can be thought of as

a generalization of torus knots, where the exponent of each σi is allowed to take on

one of the values ±1. In particular, the torus knot Tp,q is the spiral knot S(p, q, ǫ)

where ǫ = (1, 1, . . . , 1). Three examples of spiral knots are shown in Figure 3.

Figure 3. Three spiral knots of the form S(5, 3, ǫ), for ǫ =
(1, 1, 1, 1), (1, 1,−, 1−, 1), and (1,−1, 1,−1).

The crossing number of a spiral knot S(n, k, ǫ) is not necessarily equal to min((n−

1)k, (k − 1)n) as it is for torus knots. In particular, the standard projection of

a spiral knot need not necessarily exhibit the minimal crossing number of the

knot. For example, the spiral knot S(5, 2, (1, 1, 1, 1)) = T5,2 has crossing number

min(4 · 2, 1 · 5) = 5. But c(S(5, 2, (1, 1,−1,−1))) = 6, since S(5, 2, (1, 1,−1,−1))

has braid word (σ1σ2σ3
−1σ4

−1)
2
, which is Markov equivalent to a braid word

(σ1σ2
−1σ1σ1σ2

−1σ2
−1) for 63.

3. The Genus of Spiral Knots

In this paper, we use the convention that Alexander polynomials are normalized,

that is, have only non-negative powers and positive constant term. Since a spiral
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knot S(n, k, ǫ) has period k and quotient S(n, 1, ǫ) with linking number n, a direct

application of the second Murasugi condition gives us the following theorem.

Theorem 4. (Murasugi [4]) If k = pr for some prime p, then the Alexander

polynomial A(S(n, k, ǫ) satisfies the following congruence:

A(S(n, k, ǫ)) ≡ A(S(n, 1, ǫ))k(1 + t + · · · + tn−1)k−1 (mod p). (1)

This fact will allow us determine the degree of the Alexander polynomial and

the genus of spiral knots S(n, k, ǫ) when k is a prime power. We first obtain some

bounds in the general case.

Theorem 5. The genus g of a spiral knot S(n, k, ǫ) is bounded as follows:

deg(A(S(n, k, ǫ))

2
≤ g ≤

(n − 1)(k − 1)

2
. (2)

Proof. Let K = S(n, k, ǫ). By [3], we have deg(A(K))
2 ≤ g. According to [1], the

genus of a knot projection is (c−s+1)
2 , where c is the number of crossings and s is

the number of Seifert circles for that projection. The standard braid representation

of K has n strands, and therefore n Seifert circles. Since this same projection of K

has k(n − 1) crossings, substitution yields the desired upper bound. �

It is well known that a torus knot Tp,q has genus (p−1)(q−1)
2 , and that the degree

of its normalized Alexander polynomial is (p − 1)(q − 1). The following theorem

extends these results to spiral knots S(n, k, ǫ) in the case where k is a prime power.

Theorem 6. If k = pr for some prime p, then deg(A(S(n, k, ǫ))) = (n− 1)(k− 1),

and the genus of S(n, k, ǫ) is g = (n−1)(k−1)
2 .

Proof. Let K = S(n, k, ǫ). By Theorems 1 and 2, S(n, 1, ǫ) is trivial. Thus The-

orem 4 implies A(K) ≡ (1 + t + · · · + tn−1)
k−1

(mod p). If we let degp(A(K))

denote the degree of A(K) when its coefficients are reduced modulo p, then we

have deg(A(K)) ≥ degp(A(K)). Since (1 + t + · · · + tn−1)k−1 is monic, deg((1 +

t + · · · + tn−1)k−1) = degp((1 + t + · · · + tn−1)k−1) = (n − 1)(k − 1). Thus

deg(A(K)) ≥ (n − 1)(k − 1), and the result follows from Theorem 5. �



6 N. BROTHERS, S. EVANS, L. TAALMAN, L. VAN WYK, D. WITCZAK, AND C. YARNALL

One immediate corollary to Theorem 6 is that all spiral knots S(n, k, ǫ) are

nontrivial for k a prime power. We also have the following corollary, which gives

bounds on the crossing numbers of spiral knots with prime power periods.

Corollary 1. If S(n, k, ǫ) is a spiral knot with k = pr for some prime p, then

(n − 1)(k − 1) < c(S(n, k, ǫ)) ≤ (n − 1)k.

Proof. By [6] we know that deg(A(S(n, k, ǫ))) < c(S(n, k, ǫ)). By Theorem 6,

deg(A(S(n, k, ǫ))) = (n− 1)(k − 1). But since the standard closed braid projection

of S(n, k, ǫ) has (n − 1)k crossings, we have c(S(n, k, ǫ)) ≤ (n − 1)k. �

4. m-alternating properties of torus knots and spiral knots

The notion of an m-alternating projection is an obvious generalization of the

notion of an alternating projection (see [2]). A projection P (K) of a knot K is m-

alternating provided at least one of its projection words is of the form w = (0m1m)k,

for some m ≥ 0 and k ≥ 1, where zeroes denote undercrossings and ones denote

overcrossings. Notice that every alternating projection is 1-alternating. Performing

appropriate Type I Reidemeister moves to an m-alternating projection of a knot

results in an (m+1)-alternating projection [2], so a knot K is m-alternating provided

m is the least positive integer such that K admits an m-alternating projection.

Somewhat surprisingly, every knot admits a 2-alternating projection [2]. Un-

like alternating knots, 2-alternating knots may or may not admit a minimal 2-

alternating projection. For example, by Theorem 7 below, 819 = T3,4 admits a

minimal 2-alternating projection, but no 2-alternating projection of 943 is minimal

because no 2-alternating projection has an odd number of crossings.

For m ≥ 2, the m-alternating excess of K is

χm(K) = min{c(P ) − c(K) | P is a m-alternating projection of K}. (3)

Note that any m-alternating projection of a knot K has a projection word of the

form (0m1m)k, and hence has mk crossings. Thus if K admits a minimal m-

alternating projection, that is, if χm(K) = 0, then m divides c(K).

Torus knots provide examples of knots with minimal m-alternating projections

for every m ≥ 1, since for every p ≥ 2, χp−1(Tp,p+1) = 0 [2]. In fact, more can be

said.



SPIRAL KNOTS 7

Theorem 7. For any torus knot Tp,q with p < q, we have χp−1(Tp,q) = 0 and

χq−1(Tp,q) = q − p.

Proof. To prove the first equality, note that one of the standard projections of

Tp,q is (p − 1)-alternating and has (p − 1)q crossings. But since p < q, we have

(p − 1)q < (q − 1)p, and so χp−1(Tp,q) = 0.

Now consider the (q−1)-alternating standard projection of Tp,q. This projection

has p(q − 1) crossings, and since p < q, it does not exhibit the minimal number

(p − 1)q of crossings for Tp,q. The (q − 1)-alternating excess for this particular

projection is p(q − 1)− (p− 1)q = q − p, and therefore χq−1(Tp,q) ≤ q − p. But any

(q− 1)-alternating projection of Tp,q with fewer than p(q− 1) crossings can have at

most (p− 1)(q − 1) crossings. Since (p− 1)(q − 1) < (p− 1)q = c(Tp,q) [5], we must

have χq−1(Tp,q) = q − p. �

One of the two standard braid representations of torus knot Tp,q has braid word

(σ1σ2 . . . σp−1)
q
. For an appropriate choice of basepoint and orientation, this closed

braid projection has projection word (1p−10p−1)q. The standard closed braid rep-

resentation of a spiral knot S(n, k, ǫ) has a projection word with a similar structure.

If ǫ = (ǫ1, ǫ2, . . . , ǫn−1), where each ǫi = ±1, define the bit string bǫ = b1b2 . . . bn−1

as

bi =

{

1 if ǫi = 1
0 if ǫi = −1.

(4)

Let bR
ǫ denote the reverse of bǫ, that is, bR

ǫ = bn−1bn−2 . . . b1, and let b̄ǫ denote

the 1’s complement of bǫ. In this notation, spiral knot S(5, 3, (1, 1,−1,−1)) has

bǫ = 1100, and admits a projection word (bǫb̄
R
ǫ )3 = ((1100)(1100)R)3 = (1100)6;

see Figure 4.

In general, traveling downwards from the basepoint at the top left of the first

strand of the standard braid projection of S(n, k, ǫ) we must pass through n copies

of S(n, 1, ǫ) to arrive back at the first strand; this takes us through crossings 2(n−

1) times and gives us the partial projection word bǫb̄
R
ǫ . Since this projection of

S(n, k, ǫ) has k(n − 1) crossings, we must repeat the process above a total of k

times to traverse each crossing twice and return to the basepoint. Therefore, the

standard closed braid projection of a spiral knot S(n, k, ǫ) admits a projection word

of the form (bǫb̄
R
ǫ )k. We will call this the standard projection word for S(n, k, ǫ).
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Figure 4. Braid representation and spiral projection of
S(5, 3, (1, 1,−1,−1)) with partial projection word bǫb̄

R
ǫ highlighted.

Theorem 8. The standard closed braid projection of a spiral knot S(n, k, ǫ) is m-

alternating if and only if ǫ is either of the form 1m(−1)m1m · · · (±1)m or of the

form (−1)m1m(−1)m · · · (±1)m.

Proof. The conditions on ǫ require that it be of one of the following possible forms:

(1m(−1)m)r with r ≥ 1, ((−1)m1m)r with r ≥ 1, (1m(−1)m)r1m with r ≥ 0, or

((−1)m1m)r(−1)m with r ≥ 0. These four forms of ǫ lead to, respectively, the

following forms for the standard projection word (bǫb̄
R
ǫ )k: (1m0m)2r, (0m1m)2r,

(1m0m)2r+1, and (0m1m)2r+1, which are clearly m-alternating.

Conversely, if the standard projection of S(n, k, ǫ) is m-alternating, then it must

admit a projection word of the form (1m0m)s. It suffices to show that the standard

projection word starts with 1m or 0m. Suppose it begins with 1l0 or 0l1 with l < m.

Then since the standard projection word has form (bǫb̄
R
ǫ )k it must terminate with

either 10l or 01l, respectively; but a cyclic permutation of the standard projection

word would then contain either 10l1l0 or 01l0l1, which cannot happen in an m-

alternating projection. �

Theorem 7 allowed us to exactly determine the m-alternating excess of torus

knots for certain values of m, since the crossing numbers of torus knots are known.

For spiral knots S(n, k, ǫ) where k is a prime power we have only a bound on the

crossing number, which give us a bound on the m-alternating excess of certain spiral

knots.
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Corollary 2. If k = pr for some prime p and ǫ has one of the forms given in

Theorem 8, then χm(S(n, k, ǫ)) < n − 1.

Proof. For k a prime power and ǫ as in Theorem 8, by Corollary 1 we have

χm(S(n, k, ǫ)) = (n − 1)k − c(S(n, k, ǫ)) < (n − 1)k − (n − 1)(k − 1) = n − 1. �
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