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You’ve seen them played in coffee shops, on planes,
and maybe even in the back of the room during
class. These days it seems that everyone is filling in
gerechte designs of order 9 with square subregions.
But is it math?

The rules of the game

For those of you who spent the last two years in
seclusion, here are the basics of the game known as
Sudoku. A Sudoku board is a 9 × 9 matrix of in-
tegers with the property that in every row, in every
column, and in every one of nine 3×3 “blocks” (see
Figure 1), each of the integers from 1 to 9 appears
exactly once. A Sudoku puzzle is a partially filled-
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Figure 1: An example of a Sudoku board.

in Sudoku board that can be completed in exactly
one way. Notice that we only call something a “puz-
zle” if it has a unique solution (all well-made Sudoku
puzzles have this property), and also that any given
Sudoku board has many possible puzzles. Figure 2
shows two different Sudoku puzzles that have the
same solution. The “game”, of course, is to extend
a given Sudoku puzzle to its unique Sudoku board.
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Figure 2: Two Sudoku puzzles with the same solu-
tion, namely the board in Figure 1.

In both puzzles shown in Figure 2, the set of cells
containing the clues has 180 degree rotational sym-

metry (just as the black squares in a crossword puz-
zle traditionally have). By convention, most quality
Sudoku puzzles that are published today have this
property – although mathematically, we will not as-
sume that puzzles are symmetric unless we explicitly
say so. Notice that Sudoku boards are just Latin
squares with an additional “block” condition.

Counting boards

There are many questions one could ask about Su-
doku, but perhaps the most basic one is:

Question 1. How many Sudoku boards are there?

In 2005, Felgenhauer and Jarvis used a com-
puter algorithm that counted certain equivalence
classes of Sudoku boards to conclude that there are
6, 670, 903, 752, 021, 072, 936, 960 different Sudoku
boards. A proof that does not use computers is
not yet known. (Here is your chance to make your
mark!) To get a feel for how Felgenhauer and Jarvis
counted the 9× 9 Sudoku boards, let’s run through
a similar argument for 4 × 4 boards.

A Shidoku board is a 4 × 4 matrix of integers
with the property that in every row, every column,
and every 2 × 2 “block”, each of the integers from
1 to 4 appears exactly once. A Shidoku puzzle

is a partially filled-in Shidoku board with a unique
solution; see Figure 3.
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Figure 3: A Shidoku puzzle and its solution board.

Theorem 1. There are 288 different Shidoku boards.

There are many ways that we could prove this fact,
but we will follow a procedure that is similar to what
Felgenhauer and Jarvis did in the 9 × 9 case.

Proof. First, some terminology: Any Shidoku board
whose first row, first column, and first block are “or-
dered” as shown in Figure 4 will be called an or-

dered Shidoku board. We will argue that every
Shidoku board is in some sense equivalent to an or-
dered Shidoku board, and then count the possible
ordered boards.

Given any Shidoku board, we can permute the
choice of symbols 1, 2, 3, and 4 so that the first
2 × 2 block in the board is ordered as in Figure 4.
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Figure 4: An ordering on the entries of the first row,
column, and block of a Shidoku board.

Note there are 4! such permutations. Now by swap-
ping the last two columns (if necessary) we can fin-
ish ordering the first row, and by swapping the last
two rows (if necessary) we can finish ordering the
first column, so as to obtain an ordered Shidoku
board. Note that the row and column swaps rep-
resent 2 · 2 = 4 choices. Therefore, every Shidoku
board can be turned into an ordered Shidoku board
by permutations and symmetries, and every ordered
Shidoku board represents 4! · 4 = 96 different Shi-
doku boards.

To count the number of different Shidoku boards
we need only count the number of ordered Shidoku
boards, and then multiply by 96. It is a simple mat-
ter to count the ordered Shidoku boards: Simply
start with the ordered entries in Figure 4 and then
“play” Shidoku, keeping track of any choices you
make along the way. This leads to the three boards
shown in Figure 5. Therefore there are 3 · 96 = 288
different Shidoku boards.
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Figure 5: The three ordered Shidoku boards.

One way that the 9 × 9 argument for answering
Question 1 is harder than the proof above is that
we must consider more than one possible “order-
ing” of the first row, column, and block. Call an
ordered Sudoku board one whose first block is as
in Figure 6, and whose first row and column both
end with two 3-digit sequences, each with increas-
ing digits, in lexographic order. For example, in the
ordering shown in Figure 6, the first row ends with
458 and 679, and the first column ends with 269 and
358. To count all the possible Sudoku boards, one
would have to first count all of these types of or-
derings, and then count the number of boards that
complete each of these orderings. This is in fact the
sort of thing that Felgenhauer and Jarvis did to re-
duce the search space of their counting algorithms.
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Figure 6: One of many orderings on the first row,
column, and block of a Sudoku board.

It is worth pointing out that in our proof that
there are 288 Shidoku puzzles, we did not use all the
possible Shidoku “symmetries”, but we used exactly
what we needed to produce classes of Shidoku puz-
zles that were the same size, which was particularly
convenient for our counting argument. If we take
into account all the different ways that one Shidoku
puzzle can be transformed into another, then there
are actually only two classes of Shidoku puzzles, not
three. Here is an exercise for you: Show that by tak-
ing the transpose and then permuting the number
labels 1, 2, 3, 4 we can change the third ordered Shi-
doku board in Figure 5 into the second. This means
that there are only two “essentially different” Shi-
doku boards. In the 9 × 9 case, Jarvis and Russell
have shown (again, a computer was involved at some
point) that when all Sudoku symmetries are taken
into account, there are only 5, 472, 730, 538 “essen-
tially different” Sudoku boards.

Minimal Sudoku puzzles

Perhaps the second most basic question to ask about
Sudoku puzzles is the following:

Question 2. What is the minimum number of clues
that a Sudoku puzzle can have?

Keep in mind that we only consider something a
“puzzle” if it has a unique solution, so Question 2
is asking how few initial clues can completely deter-
mine an entire Sudoku board. The answer to this
question is not known.

Gordon Royle, who is the author of the book Al-
gebraic Graph Theory in the Springer series “Gradu-
ate Texts in Mathematics”, maintains a collection of
over 36, 000 different Sudoku puzzles with 17 clues.
Nobody has yet found any examples of Sudoku puz-
zles with 16 clues. This strongly suggests that the
answer to our question is 17 – but of course, a proof
this does not make. (Here is another open prob-
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lem you could work on!) If we require that the
Sudoku puzzle clues have 180 rotational symmetry,
then the least known number of clues that deter-
mines a unique solution increases to 18. Figure 7
is an example of such a puzzle. It is not known
whether or not 18 is in fact the minimum.
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Figure 7: A symmetric Sudoku puzzle with only 18
clues.

In the 4 × 4 case this question is much more
approachable, especially considering that there are
only two types of essentially different Shidoku boards
(represented by the first two boards in Figure 5,
which we’ll call type-1 and type-2 boards).

Theorem 2. The minimum number of clues that a
Shidoku puzzle can have is 4.

Proof. The Shidoku puzzle that we saw in Figure 3
has only 4 clues, so it suffices to prove that no Shi-
doku puzzle can have less than 4 clues.

Consider the board in Figure 8 (note this is the
type-1 Shidoku board). We will call a collection of

1 2 3 4

3 4 1 2

2 1 4 3

4 3 2 1

Figure 8: Four disjoint unavoidable sets on a type-1
Shidoku board.

cells on a given Shidoku board an unavoidable set

if every puzzle for that board must have at least one
clue in that set. For example, the four yellow cells
in Figure 8 make up an unavoidable set: Even if
a puzzle for this board included all 12 non-yellow
cells on the board as clues, there would still not
be enough information to determine what numbers
should be placed in the yellow cells. Therefore every
puzzle whose solution is the type-1 Shidoku board
must contain at least one clue in the yellow set.

Since the type-1 board in Figure 8 has four dis-
joint unavoidable sets, any puzzle whose solution is
that board must contain at least four clues. A sim-
ilar argument for type-2 boards applies. Therefore,
the minimum number of clues that any Shidoku puz-
zle can have is 4.

Extending the basic questions

A natural followup to Question 1 is to ask:

Question 3. How many Sudoku puzzles are there?

Remember that each Sudoku board correesponds to
many possible puzzles. For example, the board it-
self is a (very stupid) puzzle. Also, taking as clues
any 80 of the 81 entries of a board produces an (ad-
mittedly easy) puzzle. In fact, every one of these
80-clue puzzles is well-defined, i.e. has a unique so-
lution. Similarly, all 79-clue puzzles and all 78-clue
puzzles are well-defined. Not so for 77 clues, how-
ever. Here is an exercise for you: Find 77 clues that
do not determine a unique Sudoku board.

Question 3 might be more meaningful if we con-
sidered counting only the irreducible Sudoku puz-
zles, that is, the puzzles for which every clue is
necessary, in the sense that removing any one clue
would result in a set of clues with non-unique solu-
tion. In the 4× 4 Shidoku case, this is an accessible
problem. For example, it is not hard to show that
the total number of 6-clue irreducible puzzles whose
solution is any of the three Shidoku boards in Fig-
ure 5 is 16. Each of these 16 puzzles represents 96
puzzles (see the proof of Theorem 1), and thus there
are a total of 16 · 96 = 1536 irreducible 6-clue Shi-
doku puzzles.

It turns out that 6 clues is the maximum number
of clues that an irreducible Shidoku puzzle can have.
This can be shown easily by computer enumeration,
and it is not too hard to show directly that this
maximum can be at most 8, but it would of course
be preferable to have a direct argument that 6 is
the maximum. We can ask the same question in the
context of 9 × 9 puzzles:

Question 4. What is the maximum number of in-
dependent clues that a Sudoku puzzle can have?

The most independent clues that I have ever seen in
a Sudoku puzzle is 33. Is 33 the maximum? Or is
the maximum number much larger than that? Here
again you have an opportunity to make your mark
in this new field of research.

We can also extend our questions by extending
our notion of Sudoku. For example, we could add
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additional constraints to our Sudoku boards and
then ask the same questions of that smaller class
of boards. For example, consider the subset of Su-
doku boards with no repeated entries in any of the
marked diagonals shown in Figure 9. What is the
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Figure 9: Snowflake: Each row, column, and block
must contain 1–9 exactly once, with no repeated en-
tries in any marked diagonal.

minimum number of clues that such a “Snowflake”
puzzle can have? What is the maximum number of
independent clues? How many Snowflake boards ex-
ist? How many Snowflake puzzles exist? Everything
we asked about regular Sudoku boards can now be
asked about Snowflake boards. And if we make up
another special case or type of Sudoku boards, we
can ask the same questions again! Just for fun, Fig-
ure 10 shows another Sudoku variation for you to
think about. (Of course I give you a puzzle and not
a board, so you can also have the fun of playing the
puzzle if you like.)
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1 3 8

8 9

4 3

Figure 10: Pyramids: Each row, column, block, and
pyramid-region must contain 1–9 exactly once.

More Open Questions

There are of course many other questions we can
ask about Sudoku puzzles. For example, you may
have heard of Sudoku solving techniques with funny
names like “Swordfish” and “X-Wings”. A natural

question to ask is this: Given a certain set of solv-
ing techniques, what types of Sudoku puzzles can
be solved by those techniques? A possibly easier
question than this would be to ask how many Su-
doku puzzles can be solved using only “scanning”,
without any fancy logical arguments or solving tech-
niques at all.

Here is another source of questions: Since Su-
doku puzzles are at their hearts 9×9 Latin squares

(meaning that each row and column has no repeated
entries) with an additional “block” condition, we
can possibly extend some results about Latin squares
to results about Sudoku puzzles. For example, you
can make an alternate argument for the fact that
there are 288 Shidoku boards by using the known
fact that there are 576 Latin squares of order 4, and
then showing that half of them fail the extra block
condition. In the 9 × 9 case it is not true that the
number of Sudoku boards is half of the number of
Latin squares of order 9, but nonetheless it might
prove a fruitful avenue of study to consider the set
of all 9 × 9 Latin squares and then count the ones
that fail to be Sudoku boards. Anything one can ask
about Latin squares can also be asked about Sudoku
puzzles; for example, it can be shown that the max-
imum number of “mutually orthogonal” (I’ll let you
look that one up on your own) Sudoku boards is 6.

In a similar vein, we can think of Sudoku puzzles
as gerechte designs, which is just a fancy way of
saying that they are Latin squares with an extra set
of regions (namely, the 3×3 blocks) each containing
1–9 exactly once. This opens up the possibility of
generalizing Sudoku by considering regions that are
different than the usual 3 × 3 blocks. For example,
the “Jigsaw” puzzle in Figure 11 is a generalized
Sudoku puzzle that is a different type of gerechte
design.

9 6

7 2

5 2 9 4

3 9

1

6 5

3 5 1 7

2 8

4 3

Figure 11: Jigsaw: Each row, column, and jigsaw-
region must contain 1–9 exactly once.

Now things that are known about gerechte de-
signs can be brought to bear on Sudoku questions.
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Moreover, we can use the concept of gerechte de-
signs to extend our concept of Sudoku to include
even more exotic puzzles. For example, the “Wrap
Up” puzzle in Figure 12 is an example of a so-called
“multiple” gerechte design (which just means that
there are rows, columns, blocks, and yet another set
of 9 regions to contend with).

2 3

7 9

8 3

7 2

5 6

4 5

1 3

9 8

Figure 12: Wrap Up: Each row, column, block, and
color-region must contain 1–9 exactly once. Note
that the color-regions wrap around the square in
“torus” fashion.

These generalizations lead to even more ques-
tions: Which types of regions can be “extra” re-
gions? What percentage of Sudoku boards satisfy
a given extra region condition? What is the maxi-
mum number of extra regions that a Sudoku board
can have?

Of course, we can go beyond just adding extra
regions; we could also add some adding! For exam-
ple, the puzzle in Figure 13 has regions that add
to particular amounts (and you must figure out the
amounts). It is actually relatively difficult to come
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4 5 2 8
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3 8 9 2
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3
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Figure 13: Mystery Sums: Each row, column, and
block must contain 1–9 exactly once, with no re-
peated entries in any connected color-region. Color-
regions of the same color add to the same sum.

up with a partition of a Sudoku board into con-

nected regions such that each region adds to one
of five different possible sums. Does every Sudoku
board have such a partition? Multiple such parti-
tions? What are the restrictions on the values of
the sums?

If you don’t like sums, how about orders? For ex-
ample, consider the puzzle in Figure 14. Of course,

3 7 1 2 4

5

6 8 9 3 7

Figure 14: Worms: Each row, column, and block
must contain 1–9 exactly once, and the entries in
each worm either increase or decrease monotonically
(although not necessary sequentially; e.g. 2, 3, 6, 8
is allowable).

this leads to even more questions: How many Su-
doku boards can be totally filled up with “worms”
all of size 3 or greater? What is the maximum num-
ber of ways that a Sudoku board can be “wormed”?

Every Sudoku variation you can think of will
come with its own set of interesting open questions.
Mathematicians young and old have studied Sudoku
puzzles and their variations from diverse mathemat-
ical perspectives that include graph coloring, chro-
matic polynomials, Gröbner bases, the “rook prob-
lem”, magic squares, permutation group theory, and
Diophantine equations. There is math to be had
here. So get working!

For Further Reading

All of the puzzles in this article were created by
Laura Taalman and Philip Riley (otherwise known
as Brainfreeze Puzzles). For more puzzles, see:

⊲ www.brainfreezepuzzles.com

⊲ Color Sudoku, Riley and Taalman, Sterling Pub-
lishing 2007.

Here are some current mathematical research arti-
cles that relate to Sudoku puzzles:

⊲ Felgenhauer and Jarvis, Enumerating possible Su-
doku grids.

⊲ Jarvis and Russell, There are 5472730538 essen-
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tially different Sudoku grids... and the Sudoku sym-
metry group.

⊲ Bailey, Cameron, and Connelly, Sudoku, gerechte
designs, resolutions, affine space, spreads, reguli, and
Hamming codes.

⊲ Gupta, Some results on Su Doku.

⊲ Eppstein, Nonrepetitive Paths and Cycles in Graphs
with Application to Sudoku.

⊲ Van Hoeve, The Alldifferent Constraint: a Sys-
tematic Overview.

⊲ Seta and Yato, Complexity and Completeness of
Finding Another Solution and Its Application to Puz-
zles.
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