
The Power Series Method

compiled by Stephen Lucas
Department of Mathematics and Statistics

James Madison University
Harrisonburg VA 22807

March 2, 2015

1 Introduction and Motivation

A technique introduced in most first courses in differential equations is the Power Series Method
(PSM) for linear second order ordinary differential equations with non-constant coefficients. The
idea is to substitute a power series for the unknown function and equate coefficients. As long
as the differential equation’s coefficients are relatively simple, explicit recurrence relations for the
power series coefficients can be found and a solution obtained. However, even slightly complicated
differential equation coefficients quickly lead to an algebraic morass, and most books quickly move
on to a discussion of regular singular points, the method of Frobenius, Bessel functions, and so on.
Nonlinear differential equations are avoided, and the method rarely makes a re-appearance.

A relative of the PSM, known as the class of Taylor methods, is introduced in the field of numer-
ical analysis for approximating the solution of differential equations. A power series is substituted
into the differential equation, and this time coefficients of the power series are obtained as func-
tions by successive differentiation of the original differential equation, with extensive application
of the chain rule. Typically, the process is truncated at some point, and the first terms of the
Taylor series of the solution are obtained. While this approach is straightforward, can deal with
nonlinear differential equations, and can be applied on successive intervals leading to a solution
on an extended domain, typically the successive differentiations lead to complicated functions and
require substantial algebraic manipulation. As a result, they are typically replaced by Runge-Kutta
methods that use multiple evaluations of the differential equation functions to match the Taylor
series of the solution to a given number of terms. Unfortunately, varying the order of accuracy
for Runge-Kutta methods usually requires completely new function evaluations, and finding the
solution between data points is far from obvious.

In 1986, Parker and Sochacki [] discovered that if Picard’s method is applied to a system of
first order differential equations ~y′ = ~F (~y) whose right hand side is polynomial in the dependent
variables, then the power series of the solutions emerge, one term per iteration. We shall call this a
polynomial differential system, and any function that is a solution of a polynomial differential system
is projectively polynomial. Later, it was shown that the Taylor series coefficients for projectively
polynomial functions can be more easily found by direct substitution using Cauchy products to deal
with products of variables – the PSM. In addition, since the system is autonomous, a truncated
Taylor series can be used to approximate the solutions at a later time step, and the process repeated
giving solutions over arbitrary intervals.

1

While it may appear that the applications of the PSM are limited, in fact:

• Virtually every function analytic at zero is projectively polynomial.

• Virtually every system of differential equations can be rewritten as a polynomial differential
system.

• Every polynomial differential system can be rewritten in quadratic form, by introducing new
variables and either extending the original differential system, or (usually more efficiently)
defining the Taylor series coefficients for the new variables in terms of previously calculated
coefficients for the original variables.

• The algorithm to find the Taylor series coefficients for a quadratic polynomial differential
system is simple and fast, and as many Taylor coefficients as necessary can be found. The co-
efficients at the (n+1)st order explicitly depend on the previous coefficients, and so extending
the order of accuracy is straightforward. Finding a one hundredth order Taylor approximation
with fifty digit accuracy is just as easy as a fourth order method.

• Every quadratic polynomial differential system can be rewritten so that all the quadratic
terms are squares of individual variables, with no cross-product terms.

• Every polynomial differential system can be “diagonalized” into differential equations that
are polynomial functions of only one variable and its derivatives.

• There is an a-priori error bound for the solutions of polynomial differential systems, so a
combination of step size and order can be chosen to guarantee a given error requirement.

• The PSM can be easily applied as an “effectively symplectic” solver, that conserves some
Hamiltonian quantity to machine accuracy. The PSM can also be easily extended to de-
lay differential equations, integro-differential equations, stochastic differential systems, and
boundary value problems. It can also be made parallel. It can also be extended to partial
differential equations.

Our aim here is to justify these claims, and show how the PSM is a powerful, flexible and efficient
approach to solving differential equations. We will also show how the few analytic functions that
can’t be written as solutions to polynomial differential systems can still be written in a form that is
amenable to power series substitution. The level of mathematical sophistication won’t rise beyond
that of an upper level undergraduate. We will begin by looking at the disadvantages of standard
numerical approaches to systems of differential equations, motivating the PSM. We follow this with
a detailed description of how to apply the PSM, both theoretical aspects and practical requirements.

As the author, this is mostly not my own work. I’m just gathering together the work of many,
particularly a large number of JMU faculty and students over many years.

1.1 Linear Differential Equations

Most first courses on ordinary differential equations include the power series method for solving
linear differential equations with non-constant coefficients. Consider the second order differential
equation

p2(x)y′′(x) + p1(x)y′(x) + p0(x)y(x) = g(x),

2

with y(x0) = c and y′(x0) = d, and for now assume that that p2(x0) 6= 0, so x0 is what is known
as an ordinary point. As long as p1/p2 and p0/p2 are both analytic at x0, then the differential
equation has a unique solution in the neighborhood of x0. To find a solution, assume

y =
∞∑
n=0

an(x− x0)n,

as well as

y′ =
∞∑
n=1

nan(x− x0)n−1 and y′′ =
∞∑
n=2

n(n− 1)an(x− x0)n−2.

We can substitute these series into the differential equation, and since it is linear, solving for the
an’s lead to linear equations where each an can be written in terms of the previous a0, a1, . . . , an−1,
and the solution can either be left with a0 and a1 as unknowns, or the initial conditions applied.

For example, consider the very simple y′′ + y = 0 with x0 = 0. Then

∞∑
n=2

n(n− 1)anxn−2 +
∞∑
n=0

anx
n = 0,

or after shifting the index of the second sum,

∞∑
n=2

[n(n− 1)an + an−2]xn−2 = 0.

The right hand side means every power of x on the left has zero coefficient, so

an = − an−2

n(n− 1)
for n ≥ 2.

As often happens, there is an explicit solution to this recurrence relation. Successive applications
give

an = − an−2

n(n− 1)
= +

an−4

n(n− 1)(n− 2)(n− 3)

= − an−6

n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)

= · · · = (−1)k
an−2k

n(n− 1) · · · (n− 2k + 2)(n− 2k + 1)
.

If n is even, setting k = n/2 gives an = (−1)n/2a0/n!, and if n is odd, setting k = (n− 1)/2 gives
an = (−1)(n−1)/2a1/n!. Combined,

y = a0

(
1− x2

2!
+
x4

4!
+
x6

6!
− · · ·

)
+ a1

(
x− x3

3!
+
x5

5!
− x7

7!
+ · · ·

)
,

which we should recognize as the familiar y = a0 cosx+ a1 sinx.
As a slightly more complicated example, consider (1− x2)y′′ − 2xy′ + k(k + 1)y = 0. Then

(1− x2)
∞∑
n=2

n(n− 1)anxn−2 − 2x
∞∑
n=1

nanx
n−1 + k(k + 1)

∞∑
n=0

anx
n = 0,

3

or with m = n− 2,

∞∑
m=0

(m+ 2)(m+ 1)am+2x
m −

∞∑
n=2

n(n− 1)anxn − 2
∞∑
n=1

nanx
n + k(k + 1)

∞∑
n=0

anx
n = 0,

or

(2 · 1a2 + k(k + 1)a0)x0 + (3 · 2a3 − 2 · 1a1 + k(k + 1)a1)x1

+
∞∑
n=2

((n+ 2)(n+ 1)an+2 − (n(n− 1) + 2n− k(k + 1))an)xn = 0.

Equating coefficients with a0 and a1 given,

a2 = −k(k + 1)
2

a0,

a3 =
2− k(k + 1)

6
a1, and

an+2 =
n(n+ 1)− k(k + 1)

(n+ 2)(n+ 1)
an, for n = 2, 3,

If k is a natural number, this last result gives ak+2 = 0, and as long as the initial condition of
opposite parity (odd versus even) is chosen zero, the solution is a polynomial. In fact, the classical
Legendre polynomials are scaled polynomial solutions of this differential equation.

Some more adventurous students consider problems with more complicated functions as co-
efficients multiplying the derivatives of y, but unless the series combine particularly nicely, the
relationships between coefficients can become extremely difficult to work with. In any event, dif-
ferential equations textbooks quickly move on at this point to Taylor series around regular singular
points, where p2(x0) = 0 but a unique solution still exists. The method of Frobenius finds solutions
as power series multiplied by (x − x0)c where c is usually not a natural number, but we shall not
pursue such problems here. The key concept is that the power series method can be used to solve
linear differential equations, particularly with simple coefficients. However, in standard differential
equations texts it is never applied to nonlinear equations.

1.2 Numerical Taylor Methods

Since solutions of most (systems of) ordinary differential equations can’t be found in closed form,
an extensive collection of numerical approximation techniques have been developed over the years.
Almost every text that mentions the topic starts with Euler’s method. Given the first order system
~y′(t) = ~f(t, ~y(t)) with ~y(t0) = ~y0, approximate the derivatives by y′i(t) ≈ (yi(t + ∆t) − yi(t))/∆t,
then

~y(t0 + ∆t) ≈ ~y0 + ∆tf(t0, ~y(t0)).

If we let t1 = t0 + ∆t, then we have approximated the solution at the next time step and can
repeat the formula to find approximations to ~y(t1 + ∆t) = ~y(t2), ~y(t2 + ∆t) = ~y(t3), and so on, as
~y(ti+1) ≈ y(ti) + ∆tf(ti, ~y(ti)).

Euler’s method is the simplest of a family of methods known as Taylor methods, where the
aim is to find the Taylor series of the elements of ~y at t = ti to as high an order as possible, then

4

use this Taylor polynomial to approximate ~y at ti + ∆t = ti+1 and repeat. Assuming each yj(t) is
infinitely differentiable at t = ti for j = 1, 2, . . . , n, then their Taylor series are

yj(t) = yj(ti) +
y′j(ti)

1!
(t− ti) +

y′′j (ti)
2!

(t− ti)2 +
y

(3)
j (ti)

3!
(t− ti)3 + · · ·+

y
(n)
j

n!
(t− ti)n + · · · .

Since y′j(ti) = fj(ti, ~y(ti)), and with ti+1 = ti + ∆t,

yj(ti+1) = yj(ti) + fi(ti, ~y(ti))
∆t
1!

+ f ′j(ti, y(ti))
∆t2

2!
+

f ′′j (ti, y(ti))
∆t3

3!
+ · · ·+ f

(n−1)
j (ti, y(ti))

∆tn

n!
+ · · · .

The Taylor method of order n truncates the Taylor series after the term involving ∆tn, and the
error at each step is of order ∆tn+1. However, when approximating the solution to differential
equations on some interval [a, b], the error is considered order n, because reducing the size of the
time step also increases the number of steps. Thus, if you halve the step size you would expect the
error at the end to decrease by a factor of 2n.

For example, consider y′ = 1 + ty. Remembering that y is a function of t and using the chain
rule,

f(t, y) = 1 + ty,

f ′(t, y) =
d

dt
f(t, y) = 0 + y + ty′ = y + t(1 + ty) = t+ (1 + t2)y,

f ′′(t, y) =
d

dt
f ′(t, y) = 1 + 2ty + (1 + t2)y′

= 1 + 2ty + (1 + t2)(1 + ty) = 2 + t2 + (3t+ t3)y, and

f ′′′(t, y) =
d

dt
f ′′(t, y) = 2t+ (3 + 3t2)y + (3t+ t3)y′

= 2t+ (3 + 3t2)y + (3t+ t3)(1 + ty) = 5t+ t3 + (3 + 6t2 + t4)y.

Thus the fourth order Taylor method for this differential equation is

y(ti+1) ≈ y(ti) + (1 + tiy(ti))∆t+ (ti + (1 + t2i)y(ti))
∆t2

2
+

(2 + t2i + (3ti + t3i)y(ti))
∆t3

6
+ (5ti + t3i + (3 + 6t2i + t4i)y(ti))

∆t4

24
.

The difficulty with Taylor methods is that high order derivatives of f usually become extraordinarily
complicated. Even for this simple example, f ′′′ reasonably complicated. As another example,
consider the marginally more complicated y′ = 1 + t2y2. Then

f(t, y) = 1 + t2y2,

f ′(t, y) = 2ty2 + 2t2y + 2t4y3,

f ′′(t, y) = 2t2 + 8ty + 2y2 + 8t4y2 + 12t3y3 + 6t6y4, and

f ′′′(t, y) = 12t+ 12y + 16t4y + 40t3y2 + 40t2y3 + 36t3y3 + 40t6y3+

36t5y4 + 36t5y5 + 24t8y5.

5

Already, the amount of algebra required to find a fourth order Taylor series is substantial and
tedious. Another example is y′′ = sin y, which can be written as the pair of first order equations
y′1 = y2 and y′2 = sin y1. Then

f1 = y2, f2 = sin y1,

f ′1 = f2, f ′2 = y2 cos y1,

f ′′1 = f ′1, f ′′2 = −y2
2 sin y1 + cos y1 sin y1,

f
(3)
1 = f ′′2 , f

(3)
2 = −y3

2 cos y1 − 3y2 sin2 y1 + y2 cos2 y1,

f
(4)
1 = f

(3)
2 , f

(4)
2 = −y4

2 sin y1 − 11y2
2 sin y1 cos y1

− 3 sin3 y1 + cos2 y1 sin y1.

Building the Taylor series for even these simple example problems requires substantial effort,
and avoiding all of this differentiation is why Runge-Kutta methods are one of the most popular
approaches to the numerical solution of differential equations. Runge-Kutta methods use multiple
function evaluations to form an approximation whose first few terms match those of the actual
Taylor series. The disadvantage is that increasing the order of the approximations usually requires
a completely new set of function evaluations, and the solution is unavailable between data points.

1.3 Power Series Method For These Examples

The power series method for linear differential equations can be applied to all of these examples,
despite the last two not being linear. The first step is to rewrite the differential equations in
autonomous form (independent of t), which means that a Taylor series can always be expanded

around t = 0: if
dy

dt
= f(y(t)) with y(a) = ya, let τ = t − a. Then

dy

dt
=
dy

dτ

dτ

dt
, or

dy

dτ
= f(y(τ))

with y(0) = ya. The second step is to make the right hand side polynomial in the independent
variables.

Let’s reconsider y′ = 1 + ty with initial condition y(a) = ya. By letting w = t, we have the
first order system y′ = 1 + wy and w′ = 1 with y(a) = ya and w(a) = a. Shifting the time scale
by replacing t by t − a gives the equivalent system y′ = 1 + wy and w′ = 1 with y(0) = ya and

w(0) = a. Then w = a + t, and substituting with y =
∞∑
i=0

yit
i into the first differential equation

gives
∞∑
i=0

(i+ 1)yi+1t
i = 1 + (a+ t)

∞∑
i=0

yit
i = (1 + ay0) +

∞∑
i=1

(ayi + yi−1)ti,

and after equating coefficients (and applying the initial condition) we get that

y0 = ya, y1 = 1 + ay0, and yi+1 =
ayi + yi−1

i+ 1
for i = 1, 2,

Using this recurrence relation to find the Taylor series coefficients for y to arbitrary order is much
easier than using the standard Taylor method. And because the system is autonomous, the same
recurrence relation can be used to find the Taylor expansion for y at any time, simply replacing
ya by new initial values. More specifically, the coefficients give the Taylor series for the original

6

unshifted problem, truncated as y(t) ≈
n∑
i=0

yi(t − a)i. Letting ti = a + ∆ti for some time step

∆t, then y(t1) ≈
n∑
i=0

yi∆ti, the approximation at the next data point. Repeating the recurrence

relations with ya replaced by y(t1) and implicitly shifted by t1 gives a new set of Taylor coefficients

for y(t) ≈
n∑
i=0

yi(t − t1)i, and y(t2) ≈
n∑
i=0

yi∆ti. Continue for as many steps as necessary. This

approach is far easier to use than the original Taylor formula.
Moving on to y′ = 1+ t2y2 with y(a) = ya, we wouldn’t initially consider a series method due to

the nonlinearity. However, if we replace y by a power series, then we can form the square making
use of the Cauchy product, which states that(∞∑

i=0

ait
i

)(∞∑
i=0

bit
i

)
=
∞∑
i=0

 i∑
j=0

ajbi−j

 ti.

This is easily proven by expanding the left hand side and equating coefficients, and is applicable
within the smallest radius of convergence of any of the three power series. As a result, shifting
the time scale by replacing t by t − a gives y′ = 1 + (t + a)2y2 with y(0) = ya, and substituting

y =
∞∑
i=0

yit
i gives

∞∑
i=0

(i+ 1)yi+1t
i = 1 + (a2 + 2at+ t2)

(∞∑
i=0

yit
i

)2

= 1 + (a2 + 2at+ t2)
∞∑
i=0

 i∑
j=0

yjyi−j

 ti.

The initial condition gives y0 = ya, and equating coefficients and using the Cauchy product we get

y1 = 1 + a2y2
0,

2y2 = 2a2y0y1 + 2ay2
0, and for i ≥ 2,

(i+ 1)yi+1 = a2
i∑

j=0

yjyi−j + 2a
i−1∑
j=0

yjyi−1−j +
i−2∑
j=0

yjyi−2−j .

These recurrence relations can be easily applied to find the Taylor series to any order, and the
same approach as for the previous example can be used to solve the differential equation over an
interval. Also, note that the shifted version can be made autonomous by letting v = t + a and
w = (t + a)2, so y′ = 1 + w2y2, v′ = 1, and w′ = 2v with y(0) = ya, v(0) = a, w(0) = a2 – a
polynomial differential system.

Finally, consider y′′ = sin y with y(0) = y0, y′(0) = y1. It initially appears that substituting
a power series for y won’t lead anywhere useful, since we would need the sine of a power series.
However, start by rewriting the differential equation as y′1 = y2, y′2 = sin y1, with y1(0) = y0,
y2(0) = y1. In addition, let y3 = sin y1 and y4 = cos y1. Then y′3 = y′1 cos y1 = y2y4, and

7

y′4 = −y′1 sin y1 = −y2y3 with y3(0) = sin y0, y4 = cos y0. So we have the (quadratic) polynomial
differential system

y′1 = y2,
y′2 = v3,
y′3 = y2y4,
y′4 = −y2y3,

with

y1(0) = y0,
y2(0) = y1,
y3(0) = sin y0,
y4(0) = cos y0.

This polynomial differential system is nonlinear, but only involves products on the right hand side.

Substituting the power series y1 =
∞∑
i=0

ait
i, y2 =

∞∑
i=0

bit
i, y3 =

∞∑
i=0

cit
i, and y4 =

∞∑
i=0

dit
i, and using

the Cauchy product, we get the explicit recurrence relations

a0 = y0, b0 = y1, c0 = sin(y0), d0 = cos(y0),

ai+1 =
bi

i+ 1
, bi+1 =

ci
i+ 1

, ci+1 =
1

i+ 1

i∑
j=0

bjdi−j , di+1 =
1

i+ 1

i∑
j=0

bjci−j .

Finding the Taylor series to arbitrary accuracy is straightforward.

1.4 Picard’s Iteration and the Parker Sochacki Method

Consider the single first order differential equation y′(t) = f(t, y(t)), y(0) = a. Integrating on [0, t]

and applying the initial condition gives the equivalent integral equation y(t) = a+
∫ t

0
f(t, y(t)) dt.

This can be turned into an iteration as

y0(t) = a, and yn+1(t) = a+
∫ t

0
f(t, yn(t)) dt for n = 0, 1, 2,

Picard’s existence theorem states that the initial value problem has a unique solution near t = 0
as long as f is Lipschitz continuous in x and continuous in t. The proof relies on showing that the
integral equation iteration, known as Picard iteration, converges. It is often included in introductory
texts on differential equations, but usually with the proviso that it is not of practical worth for
solving differential equations, since the integrals quickly become intractable. Extending from a
single first order differential equation to a system is straightforward.

For example, consider y′ = sin y with y(0) = a. Picard iterates are

y0 = a,

y1 = a+
∫ t

0
sin a dt = a+ t sin a,

y2 = a+
∫ t

0
sin(a+ t sin a) dt = a+

cos a− cos(a+ t sin a)
sin a

,

y3 = a+
∫ t

0
sin
(
a+

cos a− cos(a+ t sin a)
sin a

)
dt,

and this last integral cannot be simplified. However, letting v = sin y and w = cos y, we have the
system y′ = v, v′ = vw and w′ = −v2 with y(0) = a, v(0) = sin a, w(0) = cos a. Picard iteration

8

for this system with y0(t) = a, v0(t) = sin a, w0(t) = cos a is

yn+1(t) = a+
∫ t

0
vn(t) dt, vn+1(t) = sin(a) +

∫ t

0
vn(t)wn(t) dt,

wn+1(t) = cos(a)−
∫ t

0
(vn(t))2 dt, for n = 0, 1, 2,

The first few iterations give

y0 = a,
y1 = a+ t sin a,

y2 = a+ t sin a+
sin a cos a

2
t2,

y3 = a+ t sin a+
sin a cos a

2
t2 +

sin a cos2 a− sin3 a

6
t3 − sin3 a cos a

12
t4,

y4 = a+ t sin a+
sin a cos a

2
t2 +

sin a cos2 a− sin3 a

6
t3 − (6 cos2 a− 5) sin a cos a

24
t4−

(16 cos3 a− 3) sin3 a

120
t5 − (2 cos2 a− 1) sin3 a cos a

36
t6 − (4 cos2 a− 3) sin3 a cos3 a

252
t7+

sin5 a cos3 a

504
t8,

as well as similar polynomials for v and w. Since the integrals only involve products, this process
can be continued indefinitely, and there does appear to be convergence. In fact, at every step an
additional term in the power series for y (and v and w) is correct. For example, the terms in y4 up
to t4 match the power series for y, and in general, terms up to tn in yn will match the power series.

The fact that Picard iteration can be applied to polynomial differential systems with as many
iterations as required was presented in Parker and Sochacki (1996), where they also proved that
each iteration provides an additional term in the power series representation of the solution. In
addition, they showed that you don’t need to keep the incorrect higher order terms at every step.
Returning to our y′ = sin y example, while y3 is a quartic polynomial, we can truncate it to a cubic
and with no loss of accuracy continue with y4. Substituting cubics into the iteration leads to sixth
degree polynomials, but again only the fourth order terms need to be kept.

The original proof of the correctness of the Parker Sochacki method for the polynomial system
~y′ = ~F (~y) is difficult to follow. An alternative approach starts by observing that since ~F is
polynomial, substituting the power series solution for ~y means the coefficients of tk in ~y′ match
those of ~F (~y). Now rewrite Picard iteration as ~y′n+1 = ~F (~yn) with ~y(0) = ~y0, where the subscript
indicates the iteration. Our proof is inductive, and the initial values are the first terms of the power
series for ~y. Now, assume that terms up to tn in the power series of ~yn match those of the true
solution ~y. Since ~F (~yn) is polynomial in the variables, all the terms up to tn will match those of
~F (~y), and so will still match the terms of ~y′ up to tn. In particular, the coefficients of tn are equal,
and on the left due to differentiation involve coefficient of tn+1 in ~y. As a result, the coefficients of
~yn+1 up to tn+1 will match those of ~y, completing our proof.

While many authors have implemented and extended the Parker Sochacki method, our later
experience has been that applying the Power Series Method to polynomial differential systems is
a more straightforward way of obtaining the Taylor series coefficients of the solution, particularly
when the system is quadratic. It doesn’t hurt that the two methods share the same acronym of
PSM :-) And finally it is worth mentioning that even for quadratic polynomial differential systems,
directly applying the Taylor method is much more cumbersome than the PSM.

9

2 The Power Series Method

While formal power series substitution is usually only seen when solving linear differential equations,
we have seen a few examples that show that it is equally applicable when working with polynomial
differential systems, and is far easier to work with than classical Taylor methods – while leading
to the same solution. We claim that almost all systems of ordinary differential equations can
be rewritten as polynomial differential systems, and formal power series substitution used. Here,
we shall see how to convert functions, and hence odes, to polynomial form, how we can always
reduce polynomial differential systems to quadratic form, and how the amount of effort required
can be often be reduced using intermediate variables that are not represented as the solution of a
differential equation. Later, we will see that polynomial differential systems can be rewritten as
equivalent odes that are independent, and consider the practicalities of estimating the accuracy of
the method.

2.1 Solving a Quadratic Polynomial Differential System

Before converting a system of differential equations to polynomial form, it is worth explicitly seeing
how straightforward it is to evaluate power series coefficients to arbitrary order. If a system of n
equations is quadratic in its variables, then it can be written as

y′i = ai +
n∑
j=1

bijyj +
n∑
j=1

n∑
k=j

cijkyjyk with yi(0) = di for i = 1, 2, . . . , n,

and each of the ai, bij , cink and di coefficients are constants – typically most of them zero. Substi-

tuting yi(t) =
∞∑
m=0

yimt
m and equating coefficients leads to the explicit recurrence relations for the

coefficients as

yi0 = di, yi1 = ai +
n∑
j=1

bijyj0 +
n∑
j=1

n∑
k=1

cijkyj0yk0,

and

yi,m+1 =
1

m+ 1

 n∑
j=1

bijyjm +
n∑
j=1

n∑
k=1

cijk

m∑
p=0

yjpyk,m−p

 ,
for i = 1, 2, . . . , n and m = 1, 2, The power series coefficients for each dependent variable are
explicit functions of the previously calculated coefficients, and can be calculated to any desired
order.

In the case of a system of n1 quadratic differential equations with an additional n2 intermediate
variables defined as quadratic combinations of variables in the differential system, we have

y′i = ai +
n1+n2∑
j=1

bijyj +
n1+n2∑
j=1

n1+n2∑
k=j

cijkyjyk with yi(0) = di for i = 1, 2, . . . , n1,

and

yi = ai +
n1∑
j=1

bijyj +
n1∑
j=1

n1∑
k=1

cijkyjyk for i = n1 + 1, n1 + 2, . . . , n1 + n2.

10

As before, substituting power series and equating coefficients leads to explicit recurrence relations
for the coefficients in the order

yi0 = di for i = 1, 2, . . . , n1,

yi0 = ai +
n1∑
j=1

bijyj0 +
n1∑
j=1

n1∑
k=1

cijkyj0yk0 for i = n1 + 1, n1 + 2, . . . , n1 + n2,

yi1 = ai +
n1+n2∑
j=1

bijyj0 +
n1+n2∑
j=1

n1+n2∑
k=1

cijkyj0yk0 for i = 1, 2, . . . , n1,

yi1 =
n1∑
j=1

bijyj1 +
n1∑
j=1

n1∑
k=1

cijk(yj0yk1 + yj1yk0) for i = n1 + 1, n1 + 2, . . . , n1 + n2,

then
yi,m+1 =

1
m+ 1

n1+n2∑
j=1

bijyjm +
n1+n2∑
j=1

n1+n2∑
k=1

cijk

m∑
p=0

yjpyk,m−p

 for i = 1, 2, . . . , n1, then

yi,m+1 =
n1∑
j=1

bijyj,m+1 +
n1∑
j=1

n1∑
k=1

cijk

m+1∑
p=0

yjpyk,m−p for i = n1 + 1, n1 + 2, . . . , n1 + n2.

for m = 1, 2,

2.2 Converting to Polynomial Form

Here we shall see how to rewrite elementary functions as a solution of a polynomial differential
system. But first, we note that if the functions f and g are projectively polynomial, so are their
sum, product and composition. Given ~y′ = ~H(~y) with y1 = f and y2 = g, then:

• If v1 = f + g then v′1 = f ′ + g′ = h1(~y) + h2(~y). The right hand side is polynomial, so f + g
is projectively polynomial.

• If v2 = fg then v′2 = f ′g + fg′ = h1(~y)g + fh2(~y) = h1(~y)y2 + y1h2(~y). The right hand side
is polynomial, so fg is projectively polynomial.

• If v3(t) = f(g(t)) then v′3 = f ′(g(t))g′(t) = f ′(g(t))h2(~y). But the process of forming the poly-
nomial system H decomposes f(t), so following the same pattern with f(g(t)) will lead to a
polynomial system, and f ◦g is projectively polynomial. In practice it is quite straightforward
using the chain rule.

2.2.1 Polynomials and Powers

• Linear : If y = at+ b with constants a and b,

y′ = a, with y(0) = b.

• Quadratic: If y = at2 + bt + c with constants a, b and c, then let y1 = y and y2 = t so
y′1 = 2at+ b = 2ay2 + b and y′2 = 1, so

y′1 = 2ay2 + b,
y′2 = 1,

with
y1(0) = c,
y2(0) = 0.

11

• Cubic: If y = at3 + bt2 + ct + d with constants a, b, c and d, then let y1 = y, y2 = t and
y3 = t2, so y′1 = 3at2 + 2bt+ c = 3ay3 + 2by2 + c, y′2 = 1, and y′3 = 2t = 2y2, so

y′1 = 2by2 + 3ay3 + c,
y′2 = 1,
y′3 = 2y2, ,

with
y(0) = d,
y2(0) = 0,
y3(0) = 0.

• Polynomial : If y =
n∑
i=0

ait
i then let y1 = y and yi+1 = ti for i = 1, 2, . . . , n − 1, so y′1 =

n∑
i=1

iait
i−1 = a1 +

n∑
i=2

iaiyi, y′2 = 1, and y′i = (i− 1)ti−2 = (i− 1)yi−1 for i = 3, 4, . . . , n, so

y′1 = a1 +
n∑
i=2

iaiyi, with y1(0) = a0,

y′2 = 1, y1(0) = 0,
y′i = (i− 1)yi−1, yi(0) = 0, for i = 3, 4, . . . , n.

Alternatively, if individual powers are required rather than a full polynomial, we could use
products. For example, if y = t6, let y1 = t6 and y2 = t with intermediate variables y3 = t2

and y4 = t4. Then

y′1 = 6t5,
y′2 = 1,

with
y1(0) = 0,
y2(0) = 1,

and
y3 = y2

2,
y4 = y2

3.

While more compact, the disadvantage of this approach is that introduces products, and even
though most of the coefficients are zero, the PSM will require Cauchy product evaluations.
As a result, this approach is not recommended.

• Reciprocal : y = 1/t doesn’t exist at t = 0, but if y = 1/(t + a) with a 6= 0, then y′ =
−1/(t+ a)2 = −y2, so

y′ = −y2, with y(0) = 1/a.

• General Powers: If y = (t + a)α for arbitrary α and a 6= 0, then y′ = α(t + a)α−1. Letting
y1 = y and y2 = 1/(t+ a), then y′1 = α(t+ a)α(t+ a)−1 = αy1y2 and y′2 = −y2

2, so

y′1 = αy1y2, with y1(0) = aα,
y′2 = −y2

2, y2(0) = 1/a.

• Reciprocal of Function: If f(t) is projectively polynomial, it is a solution of a polynomial
system of differential equations, which can be written to include f ′ = g for some function g
which is also in the system of differential equations. If we wish to represent y = 1/f , then by
the chain rule, y′ = (−1/f2)f ′ = −y2g with y(0) = 1/z(0). We then have some choices on
how to reduce this to quadratic form.

– If we let y1 = y and y2 = y1g, then y′1 = −y1y2 and y′2 = y′1g + y1g
′ = −y1y2g + y1g

′ =
−y2

2 + y1g
′. So

y′1 = −y1y2 with y1(0) = 1/z(0),
y′2 = −y2

2 + y1g
′ y2(0) = g(0)/z(0).

12

This system is quadratic with three products, and so three Cauchy products are required
in finding the relevant power series.

– Allowing the use of intermediate variables, let y1 = y and y2 = y2
1 as before. Then

y′1 = y2g with y1(0) = 1/f(0), and y2 = y2
1.

Only two Cauchy products are required to form the power series this way, and is the
recommended approach.

– If we don’t insist on a differential system, and already have the series f(t) =
∞∑
i=0

fit
i,

then y = 1/f can be rewritten as yf = 1, which involves a single Cauchy product. Then(∞∑
i=0

yit
i

)(∞∑
i=0

fit
i

)
=
∞∑
i=0

 i∑
j=0

yifj−i

 ti = 1,

so y0f0 = 1 and
i∑

j=0

yifj−i = 0, or

y0 =
1
f0

and yi = − 1
f0

i−1∑
j=0

yifj−i for i = 1, 2,

This is the most efficient way to find the Taylor series of the reciprocal of a Taylor series,
but has the disadvantage of being a special case.

• Function Powers: If f(t) is projectively polynomial, satisfies f ′ = g, and f(0) 6= 0, then let
y1 = fα and y2 = 1/f . Then y′1 = αfα−1f ′ = αy1y2g and y′2 = (−1/f2)f ′ = −y2

2g
′, with

y1(0) = f(0)α and y2(0) = 1/f(0). This pair of polynomial differential equations requires four
Cauchy products, which can be reduced to three using the intermediate variable y3 = y2g. So

y′1 = αy1y3 with y1(0) = (f(0))α,
y′2 = −y2y3 y2(0) = 1/f(0),

and y3 = y2g.

We can make the system quadratic using y′3 = y′2g + y2g
′ = −y2y3g + y2g

′ = −y2
3 + y2g

′. So

y′1 = αy1y3, with y(0) = (f(0))α,
y′2 = −y2y3, y2(0) = 1/f(0),
y′3 = −y2

3 + y2g
′, y3(0) = g(0)/f(0).

This version requires four Cauchy products.

As for reciprocal, we can do better if we don’t use polynomial projection. Differentiating
y = fα gives y′ = αfα−1f ′, or y′f = αfαf ′ = αyf ′, or(∞∑

i=0

(i+ 1)yi+1t
i

)(∞∑
i=0

fit
i

)
=

(∞∑
i=0

yit
i

)(∞∑
i=0

(i+ 1)fi+1t
i

)
.

13

Expanding both products and equating coefficients of ti gives

i∑
j=0

(i− j + 1)yi−j+1fj =
i∑

j=0

(j + 1)yi−jfj+1,

or explicitly,

y0 = fα0 and yi+1 =
αy0fi+1

f0
+

(α− 1)
(i+ 1)f0

i∑
j=1

jfjyi−j+1 for i = 0, 1, 2,

• Special Case: If y′ = yα with y(0) = β 6= 0, then let y1 = y, y2 = yα and y3 = 1/y with
y2(0) = βα and y3(0) = 1/β, so y′1 = yα = y2, y′2 = αyα−1y′ = αy2α−1 = αy2

2y3 and
y′3 = (−1/y2)y′ = −yα−2

1 = −y2y
2
3. This version requires four Cauchy products, but the

product y2y3 is repeated. If we lety4 = y2y3 = yα−1 with y4(0) = βα−1, then y′1 = y2,
y′2 = αy2y4, y′3 = −y3y4 and y′4 = (α − 1)yα−2y′ = (α − 1)y2α−2 = (α − 1)y2

4. This version
requires three Cauchy products, but we can do even better by realizing that we don’t actually
need y3 in the other equations, and y2 = y1y4, so with only two Cauchy products,

y1 = y y′1 = y1y4, y(0) = β,
y4 = yα−1, y′4 = (α− 1)y2

4, y4(0) = βα−1.

If, however, α = (n− 1)/n for natural number n > 1, then

2.2.2 Exponential and Logarithmic

• If y = et, then y′ = et = y with y(0) = 1.

• If y = eat+b, then y′ = aeat+b = ay with y(0) = eb.

• If y = ef(t) and f ′ = g, then y′ = eff ′ = yg with y(0) = ef(0).

• If y′ = ey then let y1 = y and y2 = ey, so y′1 = y2 and y′2 = eyy′ = y2
2 with y1(0) = y(0) and

y2(0) = ey(0).

• If y = ln(a+ t), a > 0, let y1 = y and y2 = 1/(a+ t). Then

y′1 = y2, with y1(0) = ln(a),
y′2 = −y2

2, y2(0) = 1/a.

• If y = ln(f(t)), f(0) > 0 and f ′ = g, then let y1 = y and y2 = 1/f(t), with the intermediate
variable y3 = y2g. Then

y′1 = y3,
y′2 = −y2y3,

with
y1(0) = ln(f(0)),
y2(0) = 1/f(0),

and y3 = y2g.

• If y = f(t)g(t) with f ′ = h and g′ = i, then y′ = fg(g′ ln f + gf ′/f). Combining various of
the results so far, let y1 = y, y2 = ln(f) and y3 = 1/f . Then y′1 = y1y2i + y1y2gh, y′2 = y3h

14

and y′3 = −y2
3h is polynomial. Including the intermediate variables y4 = y2i, y5 = y3h and

y6 = y1g gives the quadratic system

y′1 = y1y4 + y5y6,
y′2 = y5,
y3 = −y5h,

with
y1(0) = f(0)g(0),
y2(0) = ln(f(0)),
y3(0) = 1/f(0),

and
y4 = y2i,
y5 = y3h,
y6 = y1g.

Finding the coefficients requires 6 Cauchy products.

2.2.3 Trigonometric Functions

• To find power series for either cos(at+b) or sin(at+b), let y1 = cos(at+b) and y2 = sin(at+b)
with y1(0) = cos b and y2(0) = sin b. then

y′1 = −ay2,
y′2 = ay1,

with
y1(0) = cos b,
y2(0) = sin b.

Alternatively, if sine and cosine come in pairs, let y1 = α cos(at + b) + β sin(at + b) and
y2 = −α sin(at+ b) + β cos(at+ b), so

y′1 = ay′2,
y′2 = −ay1,

with
y1(0) = α cos b+ β sin b,
y2(0) = −α sin a+ β cos b.

• To find power series for cos(f(t)) or sin(f(t)) given f ′ = g, let y1 = cos(f(t)) and y2 =
sin(f(t)). Then

y′1 = −y2g,
y′2 = y1g,

with
y1(0) = cos(f(0)),
y2(0) = sin(f(0)).

• Given y = tan t, we have two good alternatives. Since y′ = sec2 t, and (sec t)′ = sec t tan t,

y1 = tan t,
y2 = sec t,

y′1 = y2
2,

y′2 = y1y2,
with

y1(0) = 1,
y2(0) = 1,

with two Cauchy products. This version is useful if the power series for secx is also needed
in the system. Or, since sec2 t = 1 + tan2 t, with only one Cauchy product,

y′ = 1 + y2, with y(0) = 1.

If y1 = tan(f(t)) with f ′ = g, the use of one intermediate variable gives

y′1 = y2g, with y1(0) = tan(f(0)), and y2 = 1 + y2
1

• If with a 6= 0 we need csc(a+ t), or csc(a+ t) and cot(a+ t), since (cot(a+ t))′ = − csc2(a+ t)
and (csc(a+ t))′ = − csc(a+ t) cot(a+ t),

y1 = cot t,
y2 = csc t,

,
y′1 = −y2

2,
y′2 = −y1y2,

with
y1(0) = cot a,
y2(0) = csc a.

Or, only for cot(a+ t) using csc2(a+ t) = 1 + cot2(a+ t),

y′ = −1− y2, with y(0) = cot a,

15

• If y1 = sin−1 t, then y′1 = 1/
√

1− t2, and using the earlier polynomial and power results
suggests y2 = 1− t2, y3 = t, y4 = 1/

√
1− t2 and y5 = 1/(1− t2), as well as the intermediate

variable y6 = y3y5,

y′1 = y4,
y′2 = −2y3,
y′3 = 1,
y′4 = y4y6,
y′5 = 2y5y6,

with

y1(0) = 0,
y2(0) = 1,
y3(0) = 0,
y4(0) = 1,
y5(0) = 1,

and y6 = y3y5.

This quadratic differential system requires three Cauchy products, and is relatively compli-
cated. Alternatively, given y1 = sin−1 t or sin y1 = t, differentiating with respect to t gives
y′1 cos y1 = 1 or y′1 = sec y. Letting y2 = sec y and y3 = tan y, as well as the intermediate
variable y4 = y2

2, then

y′1 = y2,
y′2 = y3y4,
y′3 = y2y4,

with
y1(0) = 0,
y2(0) = 1,
y3(0) = 0,

and y4 = y2
2.

Still three Cauchy products, but a simpler representation. Also, cos−1 x = π/2− sin−1 x, and
inverse sine of a function follows as in previous examples.

• If y1 = tan−1 t, let y2 = cos y1 and y3 = sin y1, with intermediate variable y4 = y2
2. Then

y′1 = y4,
y′2 = −y3y4,
y′3 = y2y4,

with
y1(0) = 0,
y2(0) = 1,
y3(0) = 0,

and y4 = y2
2.

• If y1 = sec−1(t+a), let y2 = cos y1, y3 = sin y1, y4 = cot y1 and y5 = csc y1, with intermediate
variables y6 = y2y4 and y7 = y5y6. Then

y′1 = y6,
y′2 = −y3y6,
y′3 = y2y6,
y′4 = −y5y7,
y′5 = −y4y7,

with

y1(0) = a,
y2(0) = cos a,
y3(0) = sin a,
y4(0) = cot a,
y5(0) = csc a,

and
y6 = y2y4,
y7 = y5y6.

Alas, six Cauchy products for this surprisingly difficult function.

2.2.4 More Complicated Examples

More complicated compositions or products of functions, either by themselves or as part of a
differential system, can be rewritten as quadratic differential systems by successively applying the
above rules. One approach is from the outside-in, which replaces entire functions by new variables,
and rewrites their derivatives in terms of previously calculated functions when possible.

For example, consider y1 = et sin t which satisfies y′1 = et sin t + et cos t = y1 + et cos t with
y1(0) = 0. Letting y2 = et cos t means y′1 = y1 + y2, and y′2 = et cos t − et sin t = y2 − y1 with
y2(0) = 1. So

y1 = et sin t,
y2 = et cos t,

becomes
y′1 = y1 + y2,
y′2 = y2 − y1,

with
y1(0) = 0,
y2(0) = 1.

16

The case y′1 = ey1 sin y1 with y1(0) = a is only slightly more complicated. Letting y2 = ey1 sin y1

and y3 = ey1 cos y1, then y′1 = y2, y′2 = y2
2 +y2y3 and y′3 = −y2

2 +y2y3 with y1(0) = a, y2(0) = ea sin a
and y3(0) = ea cos a. While this system is quadratic, products are duplicated, so to minimize effort
add the intermediate variables y4 = y2

2 and y5 = y2y3. Then

y′1 = ey1 sin y1,
y2 = ey1 sin y1,
y3 = ey1 cos y1,

becomes
y′1 = y2,
y′2 = y4 + y5,
y′3 = −y4 + y5,

with
y1(0) = a,
y2(0) = ea sin a,
y3(0) = ea cos a,

and
y4 = y2

2,
y5 = y2y3.

As another example, consider the function y1 = sin(exp(t2−7)), which satisfies y′1 = 2t exp(t2−
7) cos(exp(t2 − 7)) with y1(0) = sin(exp(−7)). Letting y2 = 2t, y3 = exp(t2 − 7) and y4 =
cos(exp(t2 − 7)), then y′1 = y2y3y4, y′2 = 2, y′3 = 2t exp(t2 − 7) = y2y3, and y′4 = −2t exp(t2 −
7) sin(exp(t2 − 7)) = −y1y2y3 with y2(0) = 0, y3(0) = exp(−7) and y4(0) = cos(exp(−7)). To
reduce this system to quadratic, introduce the intermediate variable y5 = y2y3, so

y1 = sin(exp(t2 − 7)),
y2 = t,
y3 = exp(t2 − 7),
y4 = cos(exp(t2 − 7),

becomes

y′1 = 2y4y5,
y′2 = 2,
y′3 = y5,
y′4 = −y1y5,

with

y1(0) = sin(exp(−7)),
y2(0) = 0,
y3(0) = exp(−7),
y4(0) = cos(exp(−7)),

and y5 = y2y3.

2.2.5 Cross Terms

Consider y′1 = ya1y
b
2 and y′2 = yc1y

d
2 with arbitrary a, b, c, d, and y1(0) = α 6= 0, y2(0) = β 6= 0.

Letting y3 = ya−1
1 yb2, y4 = yc1y

d−1
2 and using the intermediate variable y5 = y3y4,

y′1 = y1y3,
y′2 = y2y4,
y′3 = (a− 1)y2

3 + by5,
y′4 = cy5 + (d− 1)y2

4,

with

y1(0) = α,
y2(0) = β,
y3(0) = αa−1βb,
y4(0) = αcβd−1,

and y5 = y3y4.

2.3 Special Cases

Show the problem with (f(x)− f(x0))/(x− x0), proofs not polynomial, show how

2.4 All Differential Systems are Quadratic

For example, consider the system

y′1 = y1 + y2y
4
3, y′2 = y2y3, y′3 = y3

1 + y2
2y3. (1)

Let vijk = yi1y
j
2y
k
3 for 0 ≤ i ≤ 3, 0 ≤ j ≤ 2, 0 ≤ k ≤ 4 with at least one of i, j, k > 0. Then there

are an additional 4 · 3 · 5− 1 = 59 valid additional variables, and we want to find a subset of them
such that a system of first order odes includes the above three. Then following the proof algorithm

17

v′100 = v100 + v014, v′010 = v011, v′001 = v300 + v021,

with
v′014 = v004y

′
2 + 4v013y

′
3 = v004v011 + 4v013(v300 + v021)

v′011 = v001y
′
2 + v010y

′
3 = v001v011 + v010(v300 + v021)

v′300 = 3v200y
′
1 = 3v200(v100 + v014)

v′021 = 2v011y
′
2 + v020y

′
3 = 2v011v011 + v020(v300 + v021)

v′004 = 4v003y
′
3 = 4v003(v300 + v021)

v′013 = v003y
′
2 + 3v012y

′
3 = v003v011 + 3v012(v300 + v021)

v′200 = 2v100y
′
1 = 2v100(v100 + v014)

v′020 = 2v010y
′
2 = 2v010v011

v′003 = 3v002y
′
3 = 3v002(v300 + v021)

v′012 = v002y
′
2 + 2v011y

′
3 = v002v011 + 2v011(v300 + v021)

v′002 = 2v001y
′
3 = 2v001(v300 + v021).

To make this quadratic means a total of 14 equations, and requires a total of 16 Cauchy products.
We can cut down on the number of products by looking for duplicates. For example, notice

that v′013 includes the product v003v011 = (y3
3)(y2y3) = y2y

4
3 = v014. As a result, we can eliminate

the equations for v003. Similarly v001v011 = v012 and v002v011 = v013, giving the system

v′100 = v100 + v014

v′010 = v011

v′001 = v300 + v021

v′014 = v004v011 + 4v013(v300 + v021)
v′011 = v012 + v010(v300 + v021)
v′300 = 3v200(v100 + v014)
v′021 = 2v011v011 + v020(v300 + v021)
v′004 = 4v003(v300 + v021)
v′013 = v014 + 3v012(v300 + v021)
v′200 = 2v100(v100 + v014)
v′020 = 2v010v011

v′012 = v013 + 2v011(v300 + v021)
v′002 = 2v001(v300 + v021).

This version has 13 equations and 11 Cauchy products. It may be possible to reduce the number
of Cauchy products further, but there are no obvious approaches to achieve this.

Better: use auxiliary variables. Then we have

y′1 = y1 + v4y3, y′2 = v1, y′3 = v3y1 + y2v1,

with
v1 = y2y3, v2 = y2

3, v3 = y2
3, v4 = v1v2,

and there are only 7 Cauchy products, the minimum possible.

18

2.5 Practicalities

2.6 Separating Variables

3 A Priori Error Analysis

4 Historical Relationships

4.1 Fehlberg

4.2 AD

4.3 Adomium

4.4 Others

5 Hamiltonian Systems and Symplectic Solvers

6 Delay Differential Equations

7 Intero-Differential Equations

8 High Accuracy Systems and Stiffness

9 Specific Systems

9.1 N Body Problem

9.2 Double Pendulum

9.3 Heteroclinic Systems

9.4 Stochastic Differential Equations

9.5 Predator-Prey

9.6 Leah Cosine and Sine

10 Other Applications

10.1 Newton’s Method

10.2 Boundary Value Problems

References

[1] Parker & Sochacki

19

