\relax \citation{manakov} \citation{pecseli} \citation{gross} \citation{pitaevskii} \citation{benros} \citation{myraliu} \citation{gorza} \citation{sulemsulem} \citation{carr1} \citation{carr2} \newlabel{s:abstract}{{}{1}} \@writefile{toc}{\contentsline {section}{\numberline {1}Introduction}{1}} \newlabel{s:intro}{{1}{1}} \newlabel{E:NLS}{{1}{1}} \newlabel{E:soln_form}{{2}{1}} \citation{byrd} \citation{carr1} \citation{carr2} \citation{byrd} \citation{zr} \citation{MYS} \citation{KuzRubZak} \citation{FilFraYun} \citation{rr2} \citation{JCBDtp} \citation{kivpel} \citation{JCBDsoliton} \citation{JCBDtp} \citation{JCBDtp} \citation{infeldz} \citation{infeldz} \newlabel{E:defs}{{3}{2}} \newlabel{E:phi_def}{{3a}{2}} \newlabel{E:theta_def}{{3b}{2}} \newlabel{E:omega_def}{{3c}{2}} \newlabel{E:c_def}{{3d}{2}} \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Admissible parameter space for solutions of the form given in \textup {\hbox {\mathsurround \z@ \normalfont (\ignorespaces 2\hbox {}\unskip \@@italiccorr )}} for (a) focusing and (b) defocusing regimes. The shaded interior region corresponds to NTP solutions. The region in the defocusing regime is unbounded below.}}{3}} \newlabel{F:parameter_space}{{1}{3}} \@writefile{toc}{\contentsline {section}{\numberline {2}The linear stability problem}{3}} \newlabel{S:linear}{{2}{3}} \newlabel{E:npert}{{5}{3}} \newlabel{nreale}{{6a}{3}} \newlabel{nimage}{{6b}{3}} \citation{MYS} \citation{infeldz} \citation{alesh} \citation{kart} \citation{JCHStp} \citation{JCBDtp} \citation{BDNKhill} \@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Parameter values $(k,B)$ which reduce NTP solutions to TP solutions. }}{4}} \newlabel{T:tp_limit}{{1}{4}} \newlabel{nevaluepde}{{6}{4}} \newlabel{uvnontrivial}{{7}{4}} \newlabel{E:neval}{{8}{4}} \@writefile{toc}{\contentsline {section}{\numberline {3}The numerical investigation of spectral stability: Hill's method}{4}} \newlabel{s:numerics}{{3}{4}} \citation{jacobi} \citation{GolubVanLoan} \newlabel{E:phihat}{{9}{5}} \newlabel{E:UVhat}{{10}{5}} \newlabel{E:nevald}{{11}{5}} \newlabel{E:ndL1}{{11a}{5}} \newlabel{E:ndL0}{{11b}{5}} \@writefile{lot}{\contentsline {table}{\numberline {2}{\ignorespaces Parameter values and ranges used in numerical experiments. Only perturbations of NTP solutions are considered.{}}}{6}} \newlabel{T:p_vals}{{2}{6}} \@writefile{toc}{\contentsline {section}{\numberline {4}Numerical experiments}{6}} \newlabel{s:experiments}{{4}{6}} \@writefile{toc}{\contentsline {section}{\numberline {5}Observations from the numerical investigation}{6}} \newlabel{s:observations}{{5}{6}} \citation{JCBDtp} \@writefile{toc}{\contentsline {subsection}{\numberline {5.1}Case {\rm I}: Elliptic setting with $\alpha = \beta = 1$}{7}} \newlabel{ss:case1}{{5.1}{7}} \citation{kivpel} \citation{JCBDsoliton} \citation{JCBDtp} \citation{DS} \citation{JCBDtp} \@writefile{toc}{\contentsline {subsection}{\numberline {5.2}Case {\rm II}: Hyperbolic setting with $\alpha = -\beta = 1$}{8}} \newlabel{ss:case2}{{5.2}{8}} \@writefile{toc}{\contentsline {subsection}{\numberline {5.3}Case {\rm III}: Hyperbolic setting with $-\alpha = \beta = 1$}{8}} \newlabel{ss:case3}{{5.3}{8}} \citation{DS} \citation{JCBDtp} \@writefile{toc}{\contentsline {subsection}{\numberline {5.4}Case {\rm IV}: Elliptic setting with $-\alpha = -\beta = 1$}{9}} \newlabel{ss:case4}{{5.4}{9}} \bibcite{manakov}{1} \bibcite{pecseli}{2} \bibcite{gross}{3} \bibcite{pitaevskii}{4} \bibcite{benros}{5} \bibcite{myraliu}{6} \bibcite{gorza}{7} \bibcite{sulemsulem}{8} \bibcite{carr1}{9} \bibcite{carr2}{10} \bibcite{byrd}{11} \bibcite{zr}{12} \@writefile{toc}{\contentsline {section}{\numberline {6}Summary}{10}} \newlabel{s:summary}{{6}{10}} \bibcite{MYS}{13} \bibcite{KuzRubZak}{14} \bibcite{FilFraYun}{15} \bibcite{rr2}{16} \bibcite{JCBDtp}{17} \bibcite{kivpel}{18} \bibcite{JCBDsoliton}{19} \bibcite{infeldz}{20} \bibcite{alesh}{21} \bibcite{kart}{22} \bibcite{JCHStp}{23} \bibcite{BDNKhill}{24} \bibcite{jacobi}{25} \bibcite{GolubVanLoan}{26} \bibcite{DS}{27} \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Focusing in the $x$-dimension. The first column contains surface plots of $\Omega _{\qopname \relax m{max}}(k,B)$ and the second column contains the surface plots of the maximizing wavenumber $\rho (k,B)$. R$_{\qopname \relax m{max}} = \qopname \relax m{max}_{k,B} \Omega _{\qopname \relax m{max}}$ and R$_{\qopname \relax m{min}} = \qopname \relax m{min}_{k,B} \Omega _{\qopname \relax m{min}}$. White space corresponds to ($k,B$)-parameter space that was {\em not} sampled.{}}}{12}} \newlabel{F:focus_growth}{{2}{12}} \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Defocusing in the $x$-dimension. The first column contains surface plots of $\Omega _{\qopname \relax m{max}}(k,B)$ and the second column contains surface plots of the maximizing wavenumber $\rho (k,B)$. R$_{\qopname \relax m{max}} = \qopname \relax m{max}_{k,B} \Omega _{\qopname \relax m{max}}$ and R$_{\qopname \relax m{min}} = \qopname \relax m{min}_{k,B} \Omega _{\qopname \relax m{min}}$. {}}}{13}} \newlabel{F:defocus_growth}{{3}{13}}