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Abstract

We study the two dimensional cubic Nonlinear Schrödinger (NLS) equation, which admits
a large family of one-dimensional traveling wave solutions. All such bounded solutions may be
written in a amplitude-phase decomposition. In the form we present, the phase of this solution
is dependant on the spatial dimension of the one-dimensional wave-form. We first compute a
linearization of the NLS equation around these exact solutions. This linearization is then used to
study the linear stability of solutions having non-constant phase dependency, using a spectrally
based method. We present numerical evidence which suggests that these solutions are unstable
to perturbations that are transverse to the one-dimensional traveling wave. This transverse
instability occurs in both elliptic and hyperbolic cases, and in the focusing and defocusing
setting.

1 Introduction

The cubic Nonlinear Schrödinger (NLS) equation in two spatial dimensions is given by

iψt + αψxx + βψyy + |ψ|2ψ = 0. (1)

This equation admits a large family of one-dimensional traveling wave solutions. These solutions
may be written in the form

ψ(x, t) = φ(x)eiλt+iθ(x), (2)

where φ(x) and θ(x) are real-valued functions, and ω is a real constant. Bounded solutions of the
form (2) are possible if

φ2(x) =α
(

−2k2 sn 2(x, k) +B
)

, (3)

θ(x) =c

∫ x

0
φ−2(ξ)dξ, (4)

λ =
1

2
α(3B − 2(1 + k2)), and (5)

c2 = −
α2

2
B(B − 2k2)(B − 2). (6)

Here k ∈ (0, 1) is the elliptic modulus of the Jacobi elliptic sine function denoted by sn (x, k). Later
we use the fact that sn (x, k) is periodic, with period given by L = 4K, with

K(k) =

∫ π/2

0

(

1 − k2 sin2 x
)

−1/2
dx.
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Figure 1: Admissible parameter space for defocusing (a) and focusing (b) regimes

When k = 0, sn (x, 0) is equal to sin(x) with L = 2π. As k approaches 1, sn (x, k) approaches
tanh(x) and L approaches infinity.

The solution ψ is said to have trivial phase if θ(x) is constant and nontrivial phase if θ(x) is
not constant. The nontrivial phase problem involves a large parameter space. In addition to the
parameters α and β of the NLS equation (1), there are the admissible parameter choices of k and
B to be considered. For simplicity, both NLS parameters are chosen to be ±1, and the sign of the
these parameters is used to classify the resulting equation. The NLS equation is said be focusing

or attractive in the x-dimension if α > 0. If α < 0, NLS is said to be defocusing or repulsive in the
x-dimension. Similarly, the sign of β will lead to focusing or defocusing in the y-dimension [13].
The NLS equation is called hyperbolic if αβ < 0 and elliptic if αβ > 0.

The phase contribution θ(x) of (4) implicitly depends on α and B in both (3) and (6). In
order for both φ and θ to be real valued functions, we must chose B ∈ [2k2, 2] if α = 1 or B ≤ 0 if
α = −1. Figure 1 represents the (k,B) parameter space corresponding to nontrivial phase solutions
of NLS. As the phase θ approaches zero, the nontrivial phase solutions should limit to one of the
five possible types of trivial phase solutions; (i) Stokes wave, (ii) Jacobi elliptic cn , (iii) Jacobi
elliptic dn , (iv) Jacobi elliptic sn , or (v) soliton type solutions. It is easily seen that the boundaries
of the regions in figure (1) correspond to each of these trivial phase solutions. Table 2 summarizes
the parameter values for which the NTP solutions reduce to trivial phase solutions.

While both trivial phase and nontrivial phase problems are of interest, trivial phase results are
reasonably well represented in the literature; for example, see [14, 4, 2, 6, 8, 1, 12, 11], and much of
this attention has been focused on soliton stability. The trivial phase limits will provide a reference
for later discussion, when we refer to the stokes, sn, cn and dn trivial phase limits. The authors
know of no published stability results in the nontrivial phase setting. (Is this true???). To begin
to remedy this disparity, this paper numerically explores the linear stability of the nontrivial phase
problem under transverse perturbation.
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Table 1: Parameter values which reduce the nontrivial phase problem to the trivial phase problem.

Trivial phase Non-trivial phase (α = −1) Non-trivial phase(α = 1)

Stokes k = 0, B ≤ 0 k = 0, 0 ≤ B ≤ 2

cn N/A 0 ≤ k < 1, B = 2k2

dn N/A 0 ≤ k < 1, B = 2

sn 0 ≤ k < 1, B = 0 N/A

soliton Dark k = 1, B = 0 Bright k = 1, B = 2
Grey k = 1, B < 0

2 The linearized stability problem

In order to study the linear stability of nontrivial phase solutions of the NLS equation, we consider
perturbations of the form

ψp(x, y, t) = (φ(x) + εu(x, y, t) + iεv(x, y, t))eiλt+iθ(x), (7)

where u(x, y, t) and v(x, y, t) are real-valued functions, ε is a small real parameter and φ(x)e iθ(x)+iλt

is a nontrivial phase solution of the NLS equation. Substituting (7) into (1), linearizing and
separating into real and imaginary parts leads to

λu− 3γφ2u− βuyy +
1

φ4
αc2u− 2αc

1

φ3
φxv + 2αc

1

φ2
vx − αuxx = −vt, (8a)

λv − γφ2v − βvyy + αc2
1

φ4
v + 2αc

1

φ3
φxu− 2αc

1

φ2
ux − αvxx = ut. (8b)

at leading order.
Since (8) does not depend on y or t explicitly, we may assume that u(x, y, t) and v(x, y, t) have

the forms
u(x, y, t) = U(x, ρ,Ω)eiρy+Ωt + c.c., (9a)

v(x, y, t) = V (x, ρ,Ω)eiρy+Ωt + c.c., (9b)

where ρ is a real constant, U(x) and V (x) are complex-valued functions, Ω is a complex constant
and c.c. denotes complex conjugate.

If Ω has a positive real part, then the amplitudes of the perturbations grow exponentially in
time and the unperturbed solution is said to be unstable. If the real part of Ω is negative, then the
amplitudes of the perturbations decay in time and the unperturbed solution is said to be linearly
asymptotically stable. If Ω is purely imaginary, then the perturbations oscillate in time and the
unperturbed solution is said to be linearly (neutrally) stable. Upon substitution, (8) reduces to

λU − 3γφ2U + βρ2U + αc2
1

φ4
U − 2αc

1

φ3
φxV + 2αc

1

φ2
Vx − αUxx = −ΩV, (10a)

λV − γφ2V + βρ2V + αc2
1

φ4
V + 2αc

1

φ3
φxU − 2αc

1

φ2
Ux − αVxx = ΩU. (10b)
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Written in operator form, (10) is

(L1 + βρ2)U + SV = −ΩV, (11a)

(L0 + βρ2)V − SU = ΩU, (11b)

where

L1 = λ− 3γφ2 + αc2
1

φ4
− α∂xx, (12a)

L0 = λ− γφ2 + αc2
1

φ4
− α∂xx, (12b)

S = −2αc
1

φ3
φx + 2αc

1

φ2
∂x. (12c)

If c = 0, then S = 0 in (11) and the problem reduces to the stability analysis of trivial phase
solutions. This case is examined by Carter and Segur [2] and Carter and Deconinck in [6] and [1].
With the linear system (11) constructed, we are now able to consider stability of the perturbed
nontrivial phase linearization via a numerical approach.

3 Stability

The spectrum of a linear problem is often computed using finite difference methods. Here, however,
the size of the parameter space precludes the standard implementation of this technique. A spectral
method due in essence to Hill is employed which uses periodicity of the coefficients to reduce the
linear nontrivial phase stability problem to a family of spectral problems. For complete review of
Hill’s technique, which incorporates basic Floquet theory, see [3].

3.1 The numerical method

To apply Hill’s method, Fourier expansions of L1, L0 and S, all of which are defined in (12), as
well expansions of the unknown functions U and V are needed. The coefficients are written in the
complex Fourier form as

φ2 =
∞
∑

k=−∞

Qke
ikπx/L, φ−2 =

∞
∑

k=−∞

Rke
ikπx/L,

φ−4 =

∞
∑

k=−∞

Ske
ikπx/L, and φ−3∂xφ =

∞
∑

k=−∞

Tke
ikπx/L,

(13)

where the values Qk, Rk, Sk and Tk may be computed using a high-order quadrature scheme.
The periodicity of the coefficients containing powers of φ allows us to decompose the eigenfunc-

tions of U and V of the spectral problem in a Fourier-Floquet form

U(x) := eiµx
∞
∑

l=−∞

Ule
−ilπx/LP and V (x) := eiµx

∞
∑

l=−∞

Vle
−ilπx/LP . (14)

Here µ is a Floquet parameter and the factor of P is included for mathematical convenience.
The form (14) results from an application of Floquet’s theorem and then noting that we seek
eigenfunctions, which are by definition bounded. Again, see [3] for a more complete explanation.
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Substitution of (13) and (14) into (11) allows us to write equations for Un and Vn as a coupled
bi-infinite system of difference equations given by

−

(

λ+ βρ2 − α

(

iµ+
inπ

LP

)2
)

Un + 3γ

∞
∑

k=−∞

Qn−k
P

Uk − αc2
∞
∑

k=−∞

Sn−k
P

Uk

+ 2αc

∞
∑

k=−∞

Tn−k
P

Vk − 2αc

(

iµ+
inπ

LP

) ∞
∑

k=−∞

Rn−k
P

Vk = ΩVn (15a)

(

λ+ βρ2 − α

(

iµ+
inπ

LP

)2
)

Vn − γ

∞
∑

k=−∞

Qn−k
P

Vk + αc2
∞
∑

k=−∞

Sn−k
P

Vk

+ 2αc

∞
∑

k=−∞

Tn−k
P

Uk − 2αc

(

iµ+
inπ

LP

) ∞
∑

k=−∞

Rn−k
P

Uk = ΩUn, (15b)

which hold for all n. Here µ ∈ [−π
LP ,

π
LP ) and Qn−k

P

= 0 if n−k
P 6∈ Z.

In practice, a pre-multiplication of the linear system by φ4 results in more rapid convergence of
the Fourier coefficients. Also, an exact cosine series expansion of φ2, φ4 and φ6 can be used, which
follows from Jacobi’s [7] series expansion of sn 2. This pre-multiplication transforms the original
eigenvalue problem into a generalized eigenvalue problem. Golub and Van Loan [5] provide a brief
discussion of generalized eigenvalue problems. For details of the numerical technique, see [9].

Notice that equations [15a-15a] are equivalent to the original system [12a-12b]. Only when
truncated to a finite number of modes does this system become an approximation. If, for example,
we take N to be maximimal mode number in the Un and Vn approximations, then the exact coupled
bi-infinite system reduces to a (4N + 2) system of equations.

3.2 Numerical experiments

Four cases were considered numerically:

• Defocusing in x with focusing perturbation in y. (α = −1 and β = 1)

• Defocusing in x with defocusing perturbation in y. (α = −1 and β = −1)

• Focusing in x with focusing perturbation in y. (α = 1 and β = 1)

• Focusing in x with defocusing perturbation in y. (α = 1 and β = −1)

In each case, a large number of parameter values were explored numerically. Approximately 5.2
million generalized eigenvalue problems were considered, the size of each determined by the cutoff
mode of the underlying Fourier series. A truncation to N positive Fourier coefficients results in
a (4N + 2) × (4N + 2) dimensional problem. The value of N as a function of (k,B) was chosen
by computing sample problems over various k’s and B’s in the parameter region for increasingly
large N until the eigenvalues that resulted stabilized qualitatively. A simple polynomial was then
constructed to fit this data. This information, and details related to other parameter ranges
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Table 2: Parameter values and ranges used in numerical experiments.

Parameter Description value

k Elliptic Modulus linspace(0,1,65)

B Shift
For α = −1 : −logspace(−8, 0, 65)
For α = 1 : (2k2 + logspace(−8, 0, 65)) ∩ (2k2, 2)

N Fourier cutoff
For α = −1 : 15 + ceil(5k5)
For α = 1 : 10 + ceil(25k10)

ρ perturbation wavenumber linspace(0,4,65)

µ Floquet parameter linspace(− π
2K
, π
2K
, 21)

used in the experiments, is given in Table 2. In the table, k is the elliptic modulus, B may be
interpreted as a measure of nontrivial phase, N is the matrix dimension used to approximate the
operators, ρ the wavenumber of the perturbation in the y-dimension, and µ the Floquet parameter.
Also, linspace(a, b, m) is a linearly spaced vector from a to b of length m, logspace(a, b, m) is a
logarithmically spaced vector from 10a to 10b of length m and ceil is the ceiling function.

3.3 Numerical results

Using the Fourier-Floquet-Hill method we numerically considered the growth instabilities due to
transverse perturbations with wavenumber denoted by ρ over the range of parameter values of table
2. Each numerical experiment consisted of computing the eigenvalues of a (generalized) eigenvalue
problem. For each parameter triplet (k,B, ρ), for α, β = ±1, a sequence of Floquet parameters
µ was chosen from the interval [−π

LP ,
π

LP ]. The eigenvalues and eigenvectors were computed from
the resulting matrix. Although not included here, the corresponding eigenfunctions may be easily
reconstituted from this information.

Since a single eigenvalue with positive real part will lead to instability of the system, the
eigenvalue with largest real part over all choices of µ was recorded for each (k,B, ρ) triplet. That
is, we compute

Ωgrowth(k,B, ρ) = max
µ

(<(Ω(k,B, ρ, µ))),

which we call the growth rate. We reduce the dimension still further by computing the largest such
instability over all sampled perturbation wave numbers ρ. This quantity,

Ωmax(k,B) = max
ρ

(Ωgrowth),

the maximal growth rate, is plotted in the first column of figure 3.3. We also recorded the minimum
growth rate, which we computed as the minimum over ρ of Ωgrowth. We plot the maximum over
(k,B) of the maximal growth rate as well as the minimum over (k,B) of the minimal growth rate in
the first column of plots. The second column indicates the wave number ρ which leads to maximal
growth. The first two rows of the figure correspond the parameter range (k,B) = (0, 1) × (2k2, 2)
in the α = 1 case of 1(b), while the last two rows correspond to the x-defocusing parameter range
of (k,B) = (0, 1) × (−1, 0).
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Before we can discuss these plots, we need to describe the vertical axis used. For the first two
rows, we transformed the quantity B via Tf (B) = (B − 2k2)/(2 − 2k2). This maps the interval
[2k2, 2] to [0, 1]. The transform for the last two rows was just Td(B) = −B. In both cases, the
result of the transform is to scale the B interval to [0,1]. In all cases we present the plots using a
log10 scale of the vertical dimension.

In the case of α = 1, the growth plots clearly indicate that system stability changes dramatically
as B moves away from the cn trivial phase limiting case, which approached at the bottom of the
each respective plot, towards the dn trivial phase limiting case, located at the top edge of these
plots. This same rapid growth feature is evident in the case where α = −1, as seen in 3(a) and
4(a). In these plots, the lower limit of the plot corresponds to B = −1e− 8, and so is just slightly
away from the sn trivial phase limit case. This suggests that small changes in c, which is a scaling
quantity for the nontrivial phase term θ(x), leads to large changes in the physical behavior.

The sign of α appears to be a important factor that can be used to distinguish the stability
surfaces. When α = 1, the largest instability is achieved for relatively large values of k, in contrast
the location of the max growth of α = −1, which occurs for relatively small values of k, near the
stokes trivial phase limiting case. Also, the distinct local nature of the maxima in the α = 1 cases is
different from the more global nature of the maxima in the α = −1 setting. The overall qualitative
structure of the growth surface is quite similar in both the focusing case (figures 1-2(a)) and in
the defocusing case (figures 3-4(a)). The position of both the maxima and minima appear to be
influenced only slightly by the sign of the perturbation, both for α = 1 and when α = −1. In all
cases, the minimum growth rate is found nearest to the stokes limit of k = 0. It is interesting to
note is that the stability factor does not grow monotonically for any choice of k ∈ (0, 1). Instead,
the maximal growth rate is achieved at some point in the interior of the admissible parameter space.

The wavenumber of the perturbation leading to largest growth is plotted in column (b) of
figure (3.3). The case of α = −1 and β = −1, the long wave ρ = 0 perturbation results in the
largest growth. In all other cases, it is the short wave length instabilities (large ρ) that lead to the
largest growth. For α = 1 β = 1, the max instability occurs for the shortest wavelength samples,
although there appears to be a possible periodicity in the region where k is larger than about 0.95.
In fact, there appears to be periodicity in several subregions in these plots, most clearly seen in the
horizontal banding in the upper the section of plot 2(b) of 3.3 and in the vertical banding at the
bottom and in the left of this same plot. The growth factor appears constant, but the corresponding
wave number appears to sweep through a distinct range of ρ values.

3.4 Perturbation approach

Generalizing the work of cite? who to site here? in the soliton setting, we construct perturbations
to explore the stability of the nontrivial phase solutions in the large ρ limit. For large ρ, we consider
series of the form

U(x) ∼ u0(ηx) + ρ−1u1(ηx) + ρ−2u2(ηx) + . . . (16a)

V (x) ∼ v0(ηx) + ρ−1v1(ηx) + ρ−2v2(ηx) + . . . (16b)

Ω ∼ ω−2ρ
2 + ω−1ρ+ . . . (16c)

η ∼ η−1ρ+ η0 (16d)

where uj and vj are complex valued functions, ωj is a complex constant, and ηj is a real constant.
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Figure 2: Plots representing (a) maximum spectral growth for ρ ∈ [0, 4] and (b) indicat-
ing corresponding wave number leading to instability. Here Rmax = max
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(<(Ω))) and
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(<(Ω))). The vertical axis is on a log10 scale.
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Figure 3: Projection of spectrum onto the (ρ,=(Ω)) plane for (a) αβ > 0 and (b) αβ < 0.

I could include all or part of this :

Substituting into the linear problem generates

αη2
−1u

′′

0 − βu0 − ω−2v0 = 0 (17a)

αη2
−1v

′′

0 − βv0 + ω−2u0 = 0 (17b)

at leading order. Transforming to a first order system generates









u0

u′0
v0
v′0









′

=











0 1 0 0
β

αη2

−1

0 ω−2

αη2

1

0

0 0 0 1
ω−2

αη2

−1

0 β
αη2

1

0



















u0

u′0
v0
v′0









. (18)

The eigenvalues λ of (18) satisfy
(

λ2 −
1

αη2
−1

(β + iω−2)

)(

λ2 −
1

αη2
−1

(β − iω−2)

)

= 0. (19)

If the real part of ω−2 is non-zero, then <(λ) will also be non-zero. We seek bounded solutions,
and so assume that ω−2 is purely imaginary. Since it is easier to first find all unbounded solutions
and then exclude them, we do so. By requiring

1

α
(β + iω−2) > 0 AND

1

α
(β − iω−2) < 0

a parameter space corresponding to unbounded solutions may be found. If β
α > 0 then there are

no bounded eigenfunctions if −β < iω−2 < β. Since Ω ∼ ω−2ρ
2, we conclude that there will be

no eigenvalues (at first order) of the form (16c) with non-zero real part in the region between ρ2

and −ρ2. If β
α < 0 then we need to satisfy β > iω−2 and β < −iω−2, which is impossible. As a

consequence, the spectrum will will apparently occupy the full complex sheet.

I stopped here.
or just the summary:
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3.4.1 Perturbation results

These assumptions can be shown to imply that, arguing first order contributions , the cases in which
αβ > 0 should have a spectrum whose imaginary part must not lie in the region bounded between
ρ2 and −ρ2 in the (ρ,=(Ω)) plane. Continuing the analysis to second order leads to the conclusion
that ω−1 = 0. In the case where αβ < 0, it is possible to show that no region of unbounded growth
may be excluded by the assumptions. This suggests that the projection onto the spectrum onto
the (ρ,=(Ω)) plane will appear full. These claims are supported by the plots of figure (3.4), which
are qualitatively similar to the plots for all admissible choices of k and B.

4 Conclusions

The linear stability of nontrivial phase solutions to the cubic Nonlinear Schrödinger equation was
explored. A numerical method was used to generate eigenvalue information over a wide range of
parameter values. Plots were presented that reported growth factors and wave-numbers resulting in
maximal instability. A rapid increase in the rate of instability resulted from the addition of nontriv-
ial phase θ(x). A movement through the shifted B space indicated that values which correspond to
the largest growth factors occur in the parameter region which corresponds to fully nontrivial solu-
tions. In summary, numerical evidence suggests that bounded, nontrivial one dimensional solutions
to the cubic NLS equation are unstable in the presence of transverse perturbation.
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