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Abstract

We consider the two dimensional cubic nonlinear Schrödinger (NLS) equation, which admits
a large family of one-dimensional traveling wave solutions. All such bounded solutions may be
written in terms of an amplitude and a phase. If the phase of this solution is dependent on
the spatial dimension of the one-dimensional wave form, this solution is referred to as having
nontrivial phase (NTP). We study the spectral stability analysis of such NTP solutions numeri-
cally, using Hill’s method. We present evidence which suggests that all such NTP solutions are
unstable with respect to transverse perturbations. This transverse instability occurs in both the
elliptic and hyperbolic NLS equations, and in the focusing and defocusing case.

1 Introduction

The cubic nonlinear Schrödinger (NLS) equation in two spatial dimensions is given by

iψt + αψxx + βψyy + |ψ|2ψ = 0. (1)

The NLS equation is said be focusing or attractive in the x-dimension if α > 0. If α < 0, NLS is
said to be defocusing or repulsive in the x-dimension. Similarly, the sign of β will lead to focusing
or defocusing in the y-dimension [15]. The NLS equation is called hyperbolic if αβ < 0 and elliptic

if αβ > 0. This equation admits a large family of one-dimensional traveling-wave solutions. A class
of these solutions may be written in the form

ψ(x, t) = φ(x)eiθ(x)+iλt, (2)

where φ(x) and θ(x) are real-valued functions, and λ is a real constant. Bounded solutions of the
form (2) are possible if

φ2(x) = α
(

−2k2 sn 2(x, k) +B
)

, (3a)

θ(x) = c

∫ x

0
φ−2(ξ)dξ, (3b)

λ =
1

2
α(3B − 2(1 + k2)), (3c)

c2 = −α
2

2
B(B − 2k2)(B − 2), (3d)
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Figure 1: Admissible parameter space for (a) focusing (α = 1) and (b) defocusing (α = −1) regimes

where c is a real constant. Here k ∈ [0, 1] is the elliptic modulus of the Jacobi elliptic sine function,
sn (x, k). The function sn (x, k) is periodic if k ∈ [0, 1), with period given by L = 4K, with K
defined by

K(k) =

∫ π/2

0

(

1 − k2 sin2 x
)−1/2

dx,

the complete elliptic integral of the first kind [2]. When k = 0, sn (x, 0) = sin(x) with L = 2π. As
k approaches 1, sn (x, k) limits to tanh(x) and L approaches infinity.

The solution ψ is said to have trivial phase (TP) if θ(x) is (piecewise) constant and nontrivial

phase (NTP) if θ(x) is not constant. For every choice of α and β, (??) specifies a two-parameter
family of solutions in the free parameters k and B. Without loss of generality, both α and β are
chosen to be ±1. The phase contribution θ(x) of (3b) implicitly depends on α and B in both
(3a) and (3d). In order for φ and θ to be real-valued functions, we need B ∈ [2k2, 2] if α = 1 or
B ≤ 0 if α = −1. Figure 1 represents the (k,B)-parameter space corresponding to nontrivial phase
solutions of NLS. As the phase θ approaches zero, the solutions approach one of five simpler types
of TP solutions; (i) a Stokes wave, (ii) a cn-type solution, (iii) a dn-type solution, (iv) an sn-type
solution, (v) a soliton-type solutions. Expressions for these simpler solutions are given in Table 1,
and the values of k and B which cause (2) to limit to these solutions. Details of the Jacobi elliptic
functions sn,cn and dn may be found in [2]. The limiting solutions correspond to the boundaries
of the regions in Fig. 1.

While both TP and NTP solutions are of interest, TP results are reasonably well represented in
the literature; for example, see [18, 7, 4, 1, 11, 3, 14, 13], although much of this attention has focused
on the stability of solitary wave solutions. We know of only Infeld and Ziemkiewicz’s paper which
considers NTP stability [9]. The linear stability analysis and the large parameter space that needs
to be explored makes the NTP setting more complex that the TP setting. The TP solutions will
provide a reference for later discussion, when we refer to the stokes, sn, cn and dn type solutions.
In this paper, we investigate the spectral stability of all NTP solutions (2), for all possible choices
of α and β. That is, we compute the eigenvalues of an approximate spectral problem in order to
identify the possible growth instabilities.
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TP/NTP solution ψ NTP (α = −1) NTP (α = 1)

Stokes k = 0, B ≤ 0
k = 0, 0 ≤ B ≤ 2

cn ±
√

2αk cn (x, k)eiα(2k2
−1)t N/A 0 ≤ k < 1, B = 2k2

dn ±
√

2αk dn (x, k)eiα(2−k2)t N/A 0 ≤ k < 1, B = 2

sn ±
√
−2αk sn (x, k)e−iα(1+k2)t 0 ≤ k < 1, B = 0 N/A

Bright soliton ±
√

2αsech(x)eiαt k = 1, B = 2

Gray soliton ±
√

2αtanh(x)e2iαt k = 1, B <= 0

Table 1: I need to work on this table still. TP and NTP solutions coincide for the parameter choices
given column 3 and 4 of this table. The name of the solution and its explicit form are given in rows
1 and 2, respectively.

2 The linearized stability problem

In order to study the linear stability of NTP solutions of the NLS equation, we consider perturba-
tions of the form

ψp(x, y, t) = (φ(x) + εu(x, y, t) + iεv(x, y, t) + O(ε2))eiθ(x)+iλt, (4)

where u(x, y, t) and v(x, y, t) are real-valued functions, ε is a small real parameter and φ(x)e iθ(x)+iλt

is a NTP solution of NLS. Substituting (4) in (1), linearizing and separating real and imaginary
parts leads to

λu− 3γφ2u− βuyy + αc2
1

φ4
u− 2αc

1

φ3
φxv + 2αc

1

φ2
vx − αuxx = −vt, (5a)

λv − γφ2v − βvyy + αc2
1

φ4
v + 2αc

1

φ3
φxu− 2αc

1

φ2
ux − αvxx = ut. (5b)

Since (5) does not depend on y or t explicitly, we may assume that u(x, y, t) and v(x, y, t) have
the form

u(x, y, t) = U(x, ρ,Ω)eiρy+Ωt + c.c., (6a)

v(x, y, t) = V (x, ρ,Ω)eiρy+Ωt + c.c., (6b)

where ρ is a real constant, U(x) and V (x) are complex-valued functions, Ω is a complex constant
and c.c. denotes complex conjugate. Notice that ρ is the wave number of the transverse perturbation
and Ω is the exponential growth constant associated with ρ. If bounded U, V exist such that Ω has
a positive real part, then the amplitudes of the perturbations grow exponentially in time and the
unperturbed solution is said to be unstable. Upon substitution, (5) gives

λU − 3γφ2U + βρ2U + αc2
1

φ4
U − 2αc

1

φ3
φxV + 2αc

1

φ2
Vx − αUxx = −ΩV, (7a)

λV − γφ2V + βρ2V + αc2
1

φ4
V + 2αc

1

φ3
φxU − 2αc

1

φ2
Ux − αVxx = ΩU. (7b)

If c = 0, then (7) reduces to the stability analysis of trivial phase solutions. This case is examined
in [4, 3, 9, 16, 17, 5] and others. With the linear system (7) constructed, we are now able to
investigate the stability of the perturbed NTP solution numerically. SPECTRAL STABILITY
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3 Numerical investigation of spectral stability

The main problem for the numerical investigation of (7) is the size of the parameter space involved.
For every choice of the equations parameters α, β and solution parameter pairs (k,B), the spectrum
of (7) needs to computed for a range of ρ values to determine stability or to analyze any instabilities.
To this end, the efficiency of the numerical method is crucial. The exponential convergence of
Hill’s method, demonstrated in [6], allows for the systematic exploration of the large phase space
encountered here.

3.1 Method

To apply Hill’s method, Fourier expansions are needed for all coefficients of (7). Using the complex
Fourier form, we have

φ2(x) =
∞
∑

k=−∞

Qke
i2kπx/L, φ−2(x) =

∞
∑

k=−∞

Rke
i2kπx/L,

φ−4(x) =

∞
∑

k=−∞

Ske
i2kπx/L, and φ−3(x)φ′(x) =

∞
∑

k=−∞

Tke
i2kπx/L,

(8)

where Qk, Rk, Sk and Tk are the Fourier coefficients. We note that φ2(x) has period L/2 and that
φ(x) is never zero except in the TP limit cases.

The periodicity of the coefficients containing powers of φ allows us to decompose the eigenfunc-
tions of U and V of the spectral problem in a Fourier-Floquet form

U(x) = eiµx
∞
∑

l=−∞

Ule
−ilπx/L and V (x) = eiµx

∞
∑

l=−∞

Vle
−ilπx/L. (9)

The form of U and V in (9) follows from Floquet’s theorem and the observation that we seek eigen-
functions, which are by definition bounded. This decomposition has the benefit of admitting both
periodic and anti-periodic eigenfunctions. Allowing the Floquet multiplier µ to be different from
0 admits solutions with periodicity other than L. Again, see [6] for a more complete explanation
and discussion.

Substitution of (8) and (9) in (7) allows us to write equations for Un and Vn as a coupled
bi-infinite system of difference equations given by

−
(

λ+ βρ2 − α

(

iµ+
inπ

L

)2
)

Un + 3γ

∞
∑

k=−∞

Qn−k
2

Uk − αc2
∞
∑

k=−∞

Sn−k
2

Uk

+ 2αc

∞
∑

k=−∞

Tn−k
2

Vk − 2αc

(

iµ+
inπ

L

) ∞
∑

k=−∞

Rn−k
2

Vk = ΩVn (10a)

(

λ+ βρ2 − α

(

iµ+
inπ

L

)2
)

Vn − γ

∞
∑

k=−∞

Qn−k
2

Vk + αc2
∞
∑

k=−∞

Sn−k
2

Vk

+ 2αc

∞
∑

k=−∞

Tn−k
2

Uk − 2αc

(

iµ+
inπ

L

) ∞
∑

k=−∞

Rn−k
2

Uk = ΩUn, (10b)
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Parameter Description value

k Elliptic Modulus linspace(0,1,65)

B Shift
For α = −1 : −logspace(−8, 0, 65)
For α = 1 : (2k2 + logspace(−8, 0, 65)) ∩ (2k2, 2)

N Fourier cutoff
For α = −1 : 15 + ceil(5k5)
For α = 1 : 10 + ceil(25k10)

ρ perturbation wavenumber linspace(0,4,65)

µ Floquet parameter linspace(− π
K
, π
K
, 21)

Table 2: Parameter values and ranges used in numerical experiments.

which hold for all integers n. Here µ ∈ [−π
K , π

K ) and Qn−k
2

= 0 if n− k 6∈ 2Z, with R(·), S(·) and T(·)

similarly defined. Equations (10a) and (10b) are equivalent to the original system (7).
In practice, a pre-multiplication of the linear system by φ4 allows for an exact cosine series

expansion of φ2, φ4 and φ6 to be used. This follows from the differential equations for sn (x, k)
and Jacobi’s [10] series expansion of sn 2(x, k). This pre-multiplication transforms the original
eigenvalue problem into a generalized eigenvalue problem. Golub and Van Loan [8] provide a brief
discussion of generalized eigenvalue problems. For details of the numerical technique, see [12].

3.2 Numerical Experiments

Equations (10a) and (10b) are the foundation for the numerical experiments. By first choosing
a finite number of Fournier modes, and then truncating the exact bi-infinite system (10) at this
point, we can explicitly construct and compute the eigenvalues of a finite dimensional matrix
approximation. We consider all four cases: (I) focusing in x and focusing in y (α = β = 1),
(II) focusing in x and defocusing in y (α = −β = 1), (III) defocusing in x and focusing in y
(−α = β = 1) and finally, (IV) defocusing in x and defocusing in y (−α = −β = 1).

In each case, a large number of parameter values in the two dimensional parameter space shown
in Fig. 1 was explored numerically. Approximately 5.2 million generalized eigenvalue problems
were considered, the size of each determined by the cutoff mode N of the underlying Fourier
series. A truncation to N positive Fourier coefficients reduces the bi-infinite exact system (10) to
an approximate (4N + 2)-dimensional problem. For several random values of k and B, the value
N(k,B) was chosen to ensure that the resulting eigenvalues had converged to within a measured
tolerance. A simple polynomial was used to fit this data. This information, and details related to
other parameter ranges used in the experiments, are included in Table 2. In the table, k is the elliptic
modulus, B may be interpreted as a measure of the nontrivial phase quantity θ, (4N + 2) is the
matrix dimension used to approximate the full operator, ρ is the wave number of the perturbation
in the y-dimension, and µ is the Floquet parameter. Also, linspace(a, b, m) is a linearly spaced
vector from a to b of length m, logspace(a, b, m) is a logarithmically spaced vector from 10a to 10b

of length m and function ceil(x) is the smallest integer not less than x.

3.3 Results

First and foremost, it should be stated that none of the solutions considered here were found to
be spectrally stable. This establishes, at least numerically, that all one-dimensional traveling-wave

5



solutions of NLS are unstable. At this point, it remains to investigate the nature of the instabilities,
so as to better understand the dynamics of this important class of solutions of the NLS equation.

Using the Hill method we numerically considered the instabilities due to transverse perturba-
tions with wavenumber denoted by ρ ∈ [0, 4]. For each NLS equation (i.e. for each choice of
α, β = ±1), and for each parameter pair (k,B), and for each perturbation of wave number ρ, a se-
quence of a sequence of Floquet parameters µ was chosen from the interval [−π

K , π
K ]. The generalized

eigenvalues and eigenvectors were computed from the resulting matrix. The eigenvalues are ap-
proximations of spectral elements of (7), and an approximation of the corresponding eigenfunctions
may be reconstituted from the generalized eigenvectors.

Since a single eigenvalue with positive real part will lead to instability of the system, the
eigenvalue with largest real part over all choices of µ was recorded for each (k,B, ρ) triplet. That
is, we compute

Ωgrowth(k,B, ρ) = max
µ∈[−π/2L,π/2L]

ReΩ(k,B, ρ, µ),

which we call the growth rate for a given NTP solution with solution parameters k,B and perturbed
with transverse wavenumber ρ. We reduce the dimension still further by computing the largest such
growth rate over all sampled perturbation wavenumbers ρ. This quantity,

Ωmax(k,B) = max
ρ∈[0,4]

Ωgrowth(k,B, ρ),

the maximal growth rate over all ρ, is plotted in the first column of Figs. 2 and 3. This represents
the maximal exponential growth rate a solution with parameters (k,B) can undergo, and allows us
to determine the solution which is spectrally the most unstable. We also recorded the minimum
growth rate over all ρ,

Ωmin(k,B) = min
ρ∈[0,4]

Ωgrowth(k,B, ρ),

to verify that all solutions are unstable with respect to at least one transverse perturbation.
The plots in Fig. 2 correspond the x-focusing parameter range (k,B) = (0, 1) × (2k2, 2) in

the α = 1 case of Fig. 1(a). The one-to-one transform Tf (B) = (B − 2k2)/(2 − 2k2) is used to
normalize the range of B. This maps the interval [2k2, 2] to [0, 1]. The plots in 3 correspond to
the x-defocusing parameter range of (k,B) = (0, 1) × (−1, 0) shown in Fig. 1(b). The transform
Td(B) = −B is used in III and IV. Every point in the plots of Figs. 2 and 3 corresponds to a
solution, and the boundaries in the figure are the boundaries of the regions represented in Fig. 1
and correspond to the limiting TP solutions. The column on the right of Figs. 2 and 3 indicates
the wavenumber ρ which leads to maximal growth. Recall that our computations were truncated
at ρ = 4, and so in all cases the maximum or minimum may occur at values of ρ > 4. An observed
value of ρ = 4 indicates that there is a strong short-wavelength (large ρ) instability.

3.3.1 Case I: α = β = 1

The plots Ia and Ib of Fig. 2 summarize the computed instabilities in the case of focusing in both the
x- and y -dimensions. This setting is applicable to nearly monochromatic waves of small amplitude
in pulse propagation in optical waves. This is the setting which limits to the bright solitons for
k = 1. Recall that the original parameter space corresponds to (k,B) = (0, 1) × (2K 2, 2), and
that the map Tf is used to transform this to (0, 1) × (0, 1). This transform, coupled with the
log10 scaling, causes the plots to become increasingly sparse towards the right bottom corner. The
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lower boundary of the plot corresponds to B = 2k2 + (10−8), and so is just slightly away (in the
parameter space of B) from a cn-type solution. The upper boundary is close to dn-type solution,
with B = 1.99. The left boundary of the plots, where k = 0.01, represents a region in parameter
space near to Stokes wave solutions, while k = 0.99 on the left boundary. The limit case where
(k,B) = (1, 2) corresponds to the bright soliton.

A distinct ridge of large instability is noticeable in the growth plot I(a). The ridge appears to
begin near the trivial limit k = 0 and B = 0, and remains close to the cn limit boundary (within
approximately .02 units) as k increases, and reaches a global maximum of Rmax = 5.666 near
k = 0.96. The growth plot I(a) also indicates that system stability factor grows quickly for fixed
k as B moves away from the cn TP solution at the bottom the plot. After this point, increasing
B causes the growth factor to decrease, although this time more slowly, as the dn TP solution is
approached at the top edge of the plot. This suggests that for fixed k, the cn-type solution loses
stability much more quickly (in B parameter space) than does a corresponding dn-type solution.
For fixed B, the stability increases slowly as k varies from 0 to 1.

In Ib, the wavelength corresponding to the maximal growth of I(a) are given. In this case, the
maximum instability occurs for the shortest wavelength samples, ρ = 4. This indicates that there
is a strong short-wavelength (large ρ) instability, although a larger growth rate might be observed
for a larger value of ρ.

3.3.2 Case II: α = −β = 1

Plots IIa and IIb of Fig. 2 summarize the computed instabilities in the case of focusing in the
x-dimension and defocusing in the y-dimension. This case applies to deep water waves rather then
optical wave pulses. The lower boundary of the plot corresponds to B = 2k2 + (10−8), and so is
just slightly away (in parameter space of B) from a cn-type solution. The upper boundary is close
to dn-type solution, with B = 1.99. The left boundary of the plots, where k = 0.01, represents a
region in parameter space near to Stokes wave solutions, while k = 0.99 on the left boundary. The
bright soliton solution is the limiting case result when k → 1.

As in Case I, a ridge of large instability is noticeable in the growth plot IIa. The ridge appears
to begin near the trivial limit k = 0 and B = 0, and remains close to the cn limit boundary (within
approximately .02 units) as k increases, then decreases to reach a local minimum near k = 0.7 and
increases again to a global minimum near k = 0.96. Plot II(a) indicates that system stability factor
grows quickly for fixed k as B moves away from the cn TP solution at the bottom the plot. After
this point, increasing B causes the growth factor to decrease, although this time more slowly, as
the dn TP solution is approached at the top edge of the plot. This suggests that for fixed k, the cn-
type solution loses stability much more quickly (in this parameter space) than does a corresponding
dn-type solution. In comparison to this rapid loss of stability for fixed k, the stability increases
more slowly for fixed B as k varies from 0 to 1. The maximum (Rmax = 6.1141) and minimum
(Rmin = 0.012535) growth rates span a slightly larger range than the similar values in Fig. 2.

In IIb, the wavelength corresponding to the maximal growth of IIa are given. In this case, the
maximum instability of Rmax occurs for ρ = 3.375. The surface represented by IIb appears to be
much smoother than the surface of Ib.
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3.3.3 Case III: −α = β = 1

Plots IIIa and IIIb of Fig. 3 summarize the computed instabilities in the case of defocusing in the
x-dimension and focusing y-dimension. These plots again correspond to the deep water setting.
The lower limit of the plot corresponds to B = −(10−8), and so is just slightly away from the sn
solution. The left boundary of the plots, where k = 0.01, represents a region in parameter space
near to Stokes wave solutions, while k = 0.99 on the left boundary. In the limit as k → 1, the
solution becomes a gray soliton.

A distinct ridge of large instability is noticeable in the growth plot III(a). The ridge appears to
begin near the trivial limit k = 0 and B = 0, and remains close to the sn limit boundary (within
approximately .02 units) as k increases, to reach a global maximum near k = 0.02 and B = −0.0001.
The ridge then appears to decrease in amplitude as k increases towards 1. For solutions near the
Stokes wave limit, k = 0, the solutions appear to lose stability quickly as k increases, but that
an increase in B will delay this process. The increase in the growth rate is most rapid near the
sn-type solution limit at B = 0. The maximum exponential growth rate occurs for a small k near
the Stokes wave boundary of k = 0. and is given by Rmax = 7.6375 and minimum Rmin = .015578.

The plot IIIa indicates that much of large growth in this setting is attributable to short wave
perturbations. The largest growth occurs for a perturbation with wavenumber of ρ = 3.625.

3.3.4 Case IV: −α = −β = 1

The plots IVa and IVb of Fig. 3 summarize the computed instabilities in the case of defocusing in
both the x- and y-dimensions. As in Case I, this setting is applicable to nearly monochromatic waves
of small amplitude in pulse propagation in optical fiber. The lower limit of the plot corresponds to
B = −(10−8), and so is just slightly away from the sn solution, as measured in the parameter B.
The left boundary of the plots, where k = 0.01, represents a region in parameter space near to the
Stokes wave solutions, while k = 0.99 on the left boundary. In the limit as k → 1, the solutions
become grey solitons.

A distinct ridge of large instability is noticeable in the growth plot IVa. The ridge appears to
begin near the trivial limit k = 0 and B = 0, and remains close to the sn limit boundary (within
approximately .02 units) as k increases, to reach a global maximum near k = 0.02 and B = −0.0001.
The ridge then appears to decrease in amplitude as k increases towards 1. For solutions near the
Stokes wave limit, k = 0, the solutions appear to lose stability quickly as k increases. An increase
of B will delay this process. The increase in the growth rate is most rapid near the sn-type solution
limit at B = 0, and the maximal growth rate Rmax = 7.6456 and the minimum growth rate of
Rmin = 0.0001556.

In IVb the wavenumbers corresponding to the maximal growth of IVa are plotted. It appears
that a majority of the maximal instability is attributable to small ρ (long wave) perturbations. In
fact, the largest growth occurs for ρ = 0, the one-dimensional perturbation. This is different than
in the previous plots I-IIIb, where short wave perturbations were associated with much of the large
growth rate.

4 Summary

In this paper, we have considered the spectral instability of one-dimensional traveling wave NTP
solutions of the cubic nonlinear Schrödinger equation. The solutions used are formulated in terms
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Figure 2: Plots representing (a) maximum spectral growth for ρ ∈ [0, 4] and (b) indi-
cating corresponding wavenumber leading to instability. Here Rmax = max
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Re(Ω). The vertical dimension, measured on a log10(B − 2k2)/(2 − 2k2) scale,

indicates the amount of nontrival phase in the underlying solution.
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Figure 3: Defocusing x-dimension plots representing (a) maximum spectral growth for ρ ∈ [0, 4] and
(b) indicating corresponding wavenumber leading to instability. Here Rmax = max

k,B,ρ
(max

µ
(Re(Ω)))

and Rmin = min
k,B,ρ

(max
µ

(Re(Ω))). The vertical dimension, measured on the log10(−B) scale, indicates

the amount of nontrivial phase in the underlying solution.

10



of Jacobi elliptic functions. An exact spectral form of the linearized operator is discretized and used
to construct an associated generalized eigenvalue problem. The positive real part of the resulting
eigenvalues was used to determine that none of the solutions considered are spectrally stable. The
numerics indicate a well-defined ridge of maximal instability which is located in the (k,B)-parameter
region associated with fully nontrivial phase solutions. In addition, the numerical evidence indicates
that exponential growth rates of dn-type solutions, and to a lesser extent the Stokes wave solutions,
are robust under transverse perturbation. The growth of the cn-type and sn-type solutions appear
to be quite sensitive to this perturbation. In summary, numerical evidence suggests that bounded,
nontrivial one dimensional traveling wave solutions to the cubic NLS equation are unstable under
transverse perturbation, and we have characterized the nature of this instability.
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