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Abstract

We consider the two-dimensional cubic nonlinear Schrödinger (NLS) equation, which admits
a large family of one-dimensional bounded traveling-wave solutions. All such stationary solutions
may be written in terms of an amplitude and a phase. Solutions with piecewise constant phase
have been well studied [18, 15, 11, 16, 5], and no stable stationary solutions exist. Modify

to say that some TP solns are stable wrt 1-d perts here? Here we consider stability
of the larger class of solutions whose phase is dependent on the spatial dimension of the one-
dimensional wave form. These solutions are said to have nontrivial-phase (NTP). We study the
spectral stability of such NTP solutions numerically, using the spectrally based Hill’s method.
We present evidence which suggests that all such NTP solutions are unstable with respect to
both one-dimensional and transverse perturbations. Instability occurs in all cases: for both the
elliptic and hyperbolic NLS equations, and in the focusing and defocusing case.

1 Introduction

The cubic nonlinear Schrödinger (NLS) equation in two spatial dimensions is given by

iψt + αψxx + βψyy + |ψ|2ψ = 0. (1)

The NLS equation is said be focusing or attractive in the x-dimension if α > 0. If α < 0, NLS is
said to be defocusing or repulsive in the x-dimension. Similarly, the sign of β leads to focusing or
defocusing in the y-dimension [17]. The NLS equation is called hyperbolic if αβ < 0 and elliptic if
αβ > 0.

Equation (1) admits a large family of one-dimensional bounded traveling-wave solutions. All
such solutions, modulo Lie group symmetries [17], may be written in the form [4, 3]

ψ(x, t) = φ(x)eiθ(x)+iλt, (2)

where φ(x) and θ(x) are real-valued functions, and λ is a real constant. Solutions of the form (2)
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Figure 1: Admissible parameter space for solutions of the form given in (2) for (a) focusing (α = 1)
and (b) defocusing (α = −1) regimes. The gray interior region corresponds to NTP solutions.

are possible if

φ2(x) = α
(

−2k2 sn 2(x, k) +B
)

, (3a)

θ(x) = c

∫ x

0
φ−2(ξ)dξ, (3b)

λ =
1

2
α(3B − 2(1 + k2)), (3c)

c2 = −α
2

2
B(B − 2k2)(B − 2), (3d)

where c is a real constant. Here k ∈ [0, 1] is the elliptic modulus of the Jacobi elliptic sine function,
sn (x, k). The function sn (x, k) is periodic if k ∈ [0, 1), with period given by L = 4K, where
K = K(k) is defined by

K(k) =

∫ π/2

0

(

1 − k2 sin2 x
)−1/2

dx, (4)

which is the complete elliptic integral of the first kind. When k = 0, sn (x, 0) = sin(x) with
L = 2π. As k approaches 1, sn (x, k) approaches tanh(x) and L approaches infinity [2]. Although
φ(x) inherits the periodicity of sn (x, k), the solution ψ(x, t) (2) is typically not L-periodic in the
x-dimension, since the periods of eiθ and φ are generally non commensurate.

The solution ψ is said to have trivial-phase (TP) if θ(x) is (piecewise) constant and nontrivial-

phase (NTP) if θ(x) is not constant. Equivalently, the solution ψ has TP if c = 0, and has NTP
if c 6= 0. For every choice of α and β, (3) specifies a two-parameter family of solutions in the free
parameters k and B. Without loss of generality, we choose both α and β to be ±1. The phase
contribution θ(x) of (3b) implicitly depends on α and B in both (3a) and (3d). In order for φ and θ
to be real-valued functions, we need B ∈ [2k2, 2] if α = 1 or B ≤ 0 if α = −1. Figure 1 includes the
region of (k,B)-parameter space corresponding to NTP solutions of the NLS equation. As c → 0,
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(k,B) value Solution type ψ

α = 1 k = 0 B ∈ [2k2, 2] Stokes’ plane wave
√
B ei(qx+λt)

k ∈ (0, 1) B = 2k2 cn-type
√

2 k cn (x, k) ei(2k2
−1)t

k ∈ (0, 1) B = 2 dn-type
√

2 dn (x, k) ei(2−k2)t

k = 1 B = 2 bright soliton
√

2 sech(x)eit

α = −1 k = 0 B ≤ 0 Stokes’ plane wave
√
B ei(qx+λt)

k ∈ (0, 1) B = 0 sn-type
√

2 k sn (x, k)ei(1+k2)t

k = 1 B = 0 dark soliton
√

2 tanh(x) ei2t

k = 1 B < 0 gray soliton not incl.

Table 1: Parameter values (k,B) which reduce the NTP solution to more familiar TP solutions.
Parameters for the gray solition are also included, although this is not a TP solution. Here q is an
arbitrary real constant.

the phase θ approaches a (piecewise) constant, and the NTP solutions reduce to one of five types
of TP solutions: (i) a Stokes’ plane wave, (ii) a cn-type solution, (iii) a dn-type solution, (iv) an
sn-type solution, (v) a soliton-type solution. The limiting solutions correspond to the boundaries
of the regions in Fig. 1. Table 1 provides the values of k and B that cause (2) to limit to the TP
solutions, and also gives the explicit expression of ψ. The table also includes the parameter

values which correspond to the gray soliton, which is not a TP solution. An overview of
these NLS solutions is given in [4, 3]. Details of the Jacobi elliptic functions sn, cn and dn may be
found in [2].

While both TP and NTP solutions are of interest, stability of TP solutions is well under-
stood: for example, see [18, 15, 14, 9, 16, 13, 8, 5]. All TP solutions are known to be unstable
under transverse perturbations, see [5] and the references therein. Sentence about longitudi-

nal perts? We know of only Infeld and Ziemkiewicz’s paper [11] which considers the stability
of NTP solutions of the NLS equation. The (k,B)-parameter space of TP solutions is essentially
one-dimensional; it forms the boundary of the NTP (k,B)-parameter spaces shown in Fig. 1. The
(k,B)-parameter space of the NTP solution is fully two dimensional. Some TP solutions are stable
under one-dimensional perturbations [5] another citation?, and we had hoped that this much
larger parameter space would yield NTP solutions that would be stable under one-dimensional
and/or transverse perturbations. The more difficult linear stability problem and the large parame-
ter space that needs to be explored makes the NTP setting more complex than the TP setting. In
this paper, we investigate the spectral stability of all NTP solutions (2), for all choices of α = ±1
and β = ±1. That is, we compute the eigenvalues of an approximate spectral problem in order to
identify possible growing modes in the linear stability problem. No spectrally stable NTP solutions
were found, but the search did provide important stability information. A similar treatment of all
TP solutions is found in [5].

3



2 The linear stability problem

In order to study the linear stability of NTP solutions of the NLS equation, we consider perturba-
tions of the form

ψ
p
(x, y, t) = (φ(x) + εu(x, y, t) + iεv(x, y, t) + O(ε2)) eiθ(x)+iλt, (5)

where u(x, y, t) and v(x, y, t) are real-valued functions, ε is a small real parameter and φ(x) eiθ(x)+iλt

is a NTP solution of NLS. Substituting (5) in (1), linearizing and separating real and imaginary
parts leads to

λu− 3γφ2u− βuyy + αc2
1

φ4
u− 2αc

1

φ3
φxv + 2αc

1

φ2
vx − αuxx = −vt, (6a)

λv − γφ2v − βvyy + αc2
1

φ4
v + 2αc

1

φ3
φxu− 2αc

1

φ2
ux − αvxx = ut. (6b)

Since (6) does not depend on y or t explicitly, we may assume that u(x, y, t) and v(x, y, t) have
the form

u(x, y, t) = U(x, ρ,Ω) eiρy+Ωt + c.c., (7a)

v(x, y, t) = V (x, ρ,Ω) eiρy+Ωt + c.c., (7b)

where ρ is a real constant, U(x) and V (x) are complex-valued functions, Ω is a complex constant
and c.c. denotes complex conjugate. Notice that ρ is the transverse wavenumber of the perturbation
and Ω is the exponential growth rate associated with ρ. If bounded U, V exist such that Ω has
a positive real part, then the amplitudes of the perturbations grow exponentially in time and the
unperturbed solution is said to be unstable.

Upon substitution, (6) yields the spectral problem

λU − 3γφ2U + βρ2U + αc2
1

φ4
U − 2αc

1

φ3
φxV + 2αc

1

φ2
Vx − αUxx = −ΩV, (8a)

λV − γφ2V + βρ2V + αc2
1

φ4
V + 2αc

1

φ3
φxU − 2αc

1

φ2
Ux − αVxx = ΩU. (8b)

If c = 0, then (8) reduces to the stability analysis of TP solutions. This case is examined in [15,
11, 6, 12, 1, 5] and others. Using the linear system (8), we are now able to investigate the stability
of the perturbed NTP solution numerically.

3 Numerical investigation of spectral stability

The main difficulty for the numerical investigation of (8) is the size of the parameter space involved.
For every choice of the equations parameters α, β and solution parameter pairs (k,B), the spectrum
of (8) needs to computed for a range of ρ values to determine stability or to analyze any insta-
bilities. An efficient numerical method is necessary. Hill’s method [7], which exhibits exponential
convergence, allows for the systematic exploration of the large phase space encountered here.
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3.1 Hill’s method

To apply Hill’s method, Fourier expansions are needed for all coefficients of (8). Using the complex
Fourier form, we have

φ2(x) =

∞
∑

n=−∞

Qne
i2nπx/L, φ−2(x) =

∞
∑

n=−∞

Rne
i2nπx/L,

φ−4(x) =

∞
∑

n=−∞

Sne
i2nπx/L, φ−3(x)φ′(x) =

∞
∑

n=−∞

Tne
i2nπx/L,

(9)

where Qn, Rn, Sn and Tn are the Fourier coefficients. We note that φ2(x) has period L/2 and that
φ(x) is never zero except in the TP limit cases.

The periodicity of the coefficients in (8) allows us to decompose the eigenfunction components
U and V of the spectral problem (8) in a Fourier-Floquet form

U(x) = eiµx
∞
∑

n=−∞

Une
−inπx/L and V (x) = eiµx

∞
∑

n=−∞

Vne
−inπx/L. (10)

The form of U and V in (10) follows from Floquet’s theorem and the observation that we seek
eigenfunctions, which are bounded by definition. This decomposition has the benefit of admitting
both L-periodic and anti-periodic eigenfunctions when µ = 0. Recall that ψ is typically only
quasiperiodic. Allowing the Floquet exponent µ to be different from 0 gives rise to solutions
that are either quasiperiodic or have period greater than L. Again, see [7] for a more complete
explanation and discussion.

Substitution of (9) and (10) in (8) and equating Fourier coefficients allows us to write equations
for Un and Vn as a coupled bi-infinite system of difference equations given by

−
(

λ+ βρ2 − α

(

iµ+
inπ

L

)2
)

Un + 3γ

∞
∑

m=−∞

Qn−m

2

Um − αc2
∞
∑

m=−∞

Sn−m

2

Um

+ 2αc

∞
∑

m=−∞

Tn−m

2

Vm − 2αc

(

iµ+
inπ

L

) ∞
∑

m=−∞

Rn−m

2

Vm = ΩVn (11a)

(

λ+ βρ2 − α

(

iµ+
inπ

L

)2
)

Vn − γ
∞
∑

m=−∞

Qn−m

2

Vm + αc2
∞
∑

m=−∞

Sn−m

2

Vm

+ 2αc

∞
∑

m=−∞

Tn−m

2

Um − 2αc

(

iµ+
inπ

L

) ∞
∑

m=−∞

Rn−m

2

Um = ΩUn, (11b)

for all integers n. The system of equations (11) is equivalent to the original system (8). Here
µ ∈ [−π

K , π
K ) and Qn−m

2

= 0 if n−m 6∈ 2Z, with R(·), S(·) and T(·) defined similarly.

In practice, a pre-multiplication of the linear system by φ4 allows for the exact cosine series
expansion of φ2, φ4 and φ6 to be used. This follows from the differential equations for sn (x, k) and
Jacobi’s series expansion of sn 2(x, k). This pre-multiplication transforms the original eigenvalue
problem into a generalized eigenvalue problem. Golub and Van Loan [10] provide a brief discussion
of generalized eigenvalue problems.
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Parameter Description Value

k Elliptic modulus linspace(0,1,65)

B Shift
For α = −1 : −logspace(−8, 0, 65)
For α = 1 : (2k2 + logspace(−8, 0, 65)) ∩ (2k2, 2)

N Fourier cutoff
For α = −1 : 15 + ceil(5k5)
For α = 1 : 10 + ceil(25k10)

ρ Perturbation wavenumber linspace(0,4,65)

µ Floquet parameter linspace(− π
K
, π
K
, 21)

Table 2: Parameter values and ranges used in numerical experiments. Only perturbed NTP solu-
tions are considered.

3.2 Numerical experiments

By choosing a finite number of Fourier modes, the exact bi-infinite system (11) is truncated. We
explicitly construct and compute approximations to the spectral elements of (8). We consider all
four cases individually: (I) focusing in both x and y (α = β = 1), (II) focusing in x and defocusing
in y (α = −β = 1), (III) defocusing in x and focusing in y (−α = β = 1) and finally, (IV) defocusing
in both x and y (−α = −β = 1).

In each case, a large number of parameter values in the two-dimensional parameter space shown
in Fig. 1 was explored numerically. The (k,B)-parameter values considered correspond to fully
NTP solutions, and do not include TP solutions. Approximately 5.2 million generalized eigenvalue
problems were considered, the size of each determined by the cutoff mode N of the underlying
Fourier series. A truncation to N positive Fourier modes reduces the exact bi-infinite system
(11) to an approximate (4N + 2)-dimensional problem. For several choices of k and B, a value
of N = N(k,B) was chosen to ensure that the resulting eigenvalues had converged to within a
measured tolerance. A simple polynomial was used to fit this data. This information, and details
related to other parameter ranges used in the experiments, are included in Table 2. In the table,
k is the elliptic modulus, B is the offset parameter and may be interpreted as a measure of the
nontrivial-phase quantity θ, (4N+2) is the matrix dimension used to approximate the full operator,
ρ is the wavenumber of the perturbation in the y-dimension, and µ is the Floquet exponent.
Lastly, linspace(a, b, m) is a linearly spaced vector from a to b of length m, logspace(a, b, m) is
a logarithmically spaced vector from 10a to 10b of length m and function ceil(x) is the smallest
integer not less than x.

3.3 Observations

First and foremost, it should be stated that none of the NTP solutions considered here were
found to be spectrally stable under one-dimensional (ρ = 0) or transverse (ρ > 0) perturbations.
This establishes, at least numerically, that all one-dimensional traveling-wave solutions of NLS of
the form given by (2) are spectrally unstable with respect to both longitudinal and transverse
perturbations. At this point, it remains to investigate the nature of the instabilities, so as to better
understand the dynamics of this important class of solutions of the NLS equation.

Using Hill’s method we numerically considered the instabilities due to perturbations with
wavenumber denoted by ρ ∈ [0, 4]. Note the ρ = 0 corresponds to one-dimensional, i.e. purely
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longitudinal, perturbations. For each NLS equation (i.e. for each choice of α, β = ±1), and for
each parameter pair (k,B), and for each perturbation of wavenumber ρ, a sequence of a sequence of
Floquet parameters µ was chosen from the interval [− π

K ,
π
K ]. The generalized eigenvalues and eigen-

vectors were computed from the resulting matrix. The eigenvalues are approximations of spectral
elements of (8), and an approximation of the corresponding eigenfunctions may be reconstructed
from the generalized eigenvectors.

Since a single eigenvalue with positive real part leads to instability of the system, the eigenvalue
with largest real part over all choices of µ was recorded for each (k,B, ρ) triplet. That is, we compute

Ωgrowth(k,B, ρ) = max
µ∈[−π/K,π/K]

Re Ω(k,B, ρ, µ), (12)

which we call the (most unstable) growth rate. The constant Ωgrowth represents the largest

exponential growth rate a given NTP solution with parameters (k,B) will experience

when perturbed with transverse wavenumber ρ. We reduce the dimension further by com-
puting the largest such growth rate over all sampled perturbation wavenumbers ρ. This quantity,

Ωmax(k,B) = max
ρ∈[0,4]

Ωgrowth(k,B, ρ), (13)

the maximal growth rate over all ρ, is plotted in the first column of Figs. 2 and 3. The constant
Ωmax(k,B) represents the maximal exponential growth rate that a solution with parameters (k,B)
can undergo in the range examined, and allows us to determine the perturbation to which the NTP
solution is spectrally the most unstable. We also recorded the minimum growth rate over all ρ,

Ωmin(k,B) = min
ρ∈[0,4]

Ωgrowth(k,B, ρ), (14)

to verify that all solutions are unstable with respect to every sampled perturbation.
Every point plotted in Figs. 2 and 3 corresponds to an NLS solution for which we computed

the linear stability analysis, and the boundaries in the figure are the boundaries of the regions
represented in Fig. 1 and correspond to limiting TP solutions. Fig. 2 corresponds to the x-focusing
(α = 1) parameter range (k,B) = (0, 1) × (2k2, 2) in the α = 1 case of Fig. 1(a). The one-to-
one transform Tf (B) = (B − 2k2)/(2 − 2k2) is used to normalize the range of B. This maps the
interval [2k2, 2] to [0, 1]. Fig. 3 corresponds to the x-defocusing (α = −1) parameter range of
(k,B) = (0, 1) × (−1, 0) shown in Fig. 1(b). The transform Td(B) = −B is used in Fig. 3. A log10

scale is used in the vertical dimension of Figs. 2 and 3. This causes the panels of Fig. 2 to become
increasing sparse in their lower right corners. The right-hand panels of Figs. 2 and 3 indicates
the wavenumber ρ which leads to maximal growth shown in the left-hand panels. Recall that our
computations were truncated at ρ = 4.

3.3.1 Case I: Elliptic setting with α = β = 1

Panels Ia and Ib of Fig. 2 summarize some properties of the computed instabilities in the case
of focusing in both the x- and y-dimensions. The lower boundary of the plot corresponds to
B = 2k2 + (10−8), and so is only slightly away (in the parameter space of B) from a cn-type
solution. The upper boundary is close to dn-type solutions, with B = 1.99. The left boundary of
the plots, where k = 0.01, represents a region in parameter space near to Stokes’ wave solutions.
The entire right-hand boundary, where k = 0.99, is near to the bright soliton limit case which
occurs at (k,B) = (1, 2).
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A distinct ridge of large instability is noticeable in the plot of Ωmax in panel Ia of Fig. 2.
The ridge appears to begin near the zero solution at (k,B) = (0, 0), and remains close to the cn
limit boundary (within approximately .02 units) as k increases. It reaches a global maximum of
Rmax = 5.666 around k = 0.96. Moving away from the cn boundary results in the rapid increase
of Ωmax. Movement away from the dn boundary results in a much slower increase in the value of
Ωmax, as does moving away from the Stokes’ wave boundary for B larger than approximately 0.001.
The maximum value of Ωmax over the sampled (k,B) space, given by Rmax = 5.666, is reached near
(k,B) ≈ (0.99, 1.98). The minimum (Rmin = 0.015693) occurs for (k,B) = (0.01, 0.01) for ρ = 4.
Since ψ ≡ 0 a stable solution to the NLS equation, this minimum goes to zero as (k,B) → 0.

In Ib, the wavelength corresponding to the maximal growth of Ia is given. In this case, the
maximum instability occurs for the shortest wavelength samples, ρ = 4. This indicates that there
is a strong short-wavelength instability, i.e. for a large, and possibly infinite, value of ρ.

3.3.2 Case II: Hyperbolic setting with α = −β = 1

Panels IIa and IIb of Fig. 2 summarize some properties of the computed instabilities in the case
of focusing in the x-dimension and defocusing in the y-dimension. The lower boundary of the plot
corresponds to B = 2k2 +(10−8), and so is just slightly away (in parameter space of B) from a cn-
type solution. The upper boundary is close to dn-type solution, with B = 1.99. The left boundary
of the plots, where k = 0.01, represents a region in parameter space near to Stokes’ wave solutions,
while k = 0.99 on the left boundary. The bright soliton solution is the limiting case result when
k → 1.

As in Case I, a ridge of large growth rate is noticeable in the growth plot IIa. The ridge
appears to begin near the zero solution at (k,B) = (0, 0), and remains close to the cn-type limit
boundary (within approximately .02 units) as k increases. This ridge has a local minimum near
k = 0.7 and increases again to a global (over all admissible (k,B)-parameter space) maximum near
k = 0.96. As in the setting above, moving away from the cn-type boundary results in a rapid
increase of Ωmax. Moving away from the dn boundary results in a much slower increase in the
value of Ωmax. For B > 0.001, moving away from the boundary result in a similar slow increase
in Ωmax. The maximum (Rmax = 6.1141) and minimum (Rmin = 0.012535) growth rates span a
slightly larger range than the similar values in Fig. 2. These are centered near (k,B) = (0.01, 0.01)
and (k,B) = (0.96, 1.98), respectively.

In IIb, the wavelength corresponding to the maximal growth Rmax of IIa are given. In this case,
the maximum instability of Rmax occurs for ρ = 3.375. The surface represented by IIb appears to
be much smoother than the surface of Ib.

3.3.3 Case III: Hyperbolic setting with −α = β = 1

Panels IIIa and IIIb of Fig. 3 summarize some properties of the computed instabilities in the case
of defocusing in the x-dimension and focusing y-dimension. The lower limit of the plot corresponds
to B = −(10−8), and so is just slightly away from the sn-type solution. The left boundary of the
plots, where k = 0.01, represents a region in parameter space near to Stokes’ wave solutions, while
k = 0.99 on the left boundary. In the limit as k → 1, the solution becomes a gray soliton.

A distinct ridge of large instability is noticeable in the growth plot IIIa. The ridge appears to
begin near the zero solution limit at (k,B) = (0, 0), and remains close to the sn limit boundary
(within approximately .02 units) as k increases. It quickly reaches the global maximum (over
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Figure 2: Focusing in x-dimension plots representing a) Ωmax and b) the wavenumber ρ associated
to Ωmax. Rmax = maxk,B Ωmax and Rmin = mink,B Ωmin. The vertical direction indicates the
amount of nontrivial-phase in the underlying solution, and is plotted on a log10 scale. White space
corresponds to (k,B)-parameter space that was not sampled.

all admissible (k,B)-parameter space) of Rmax = 7.6375 near k = 0.02 and B = −0.0001. The
ridge then appears to decrease in amplitude as k increases towards 1. Moving away from the
sn-type boundary results in a rapid increase of Ωmax. Moving away from the dn-type boundary
results in a much slower increase in the value of Ωmax. Similarly, there is much slower increase
when moving away from the Stokes’ wave limit for B > 0.001. The maximum exponential growth
rate, Rmax = 7.6375, occurs for (k,B) ≈ (0.02, 0.00001). The minimum exponential growth,
Rmin = 0.015578 is found near (k,B) ≈ (0.01, 0.9). Both the maximum and minimum are located
near to the Stokes’ wave boundary.

The plot IIIa indicates short wave perturbations lead to large values of Ωmax. The largest
growth occurs for a perturbation with wavenumber of ρ = 3.625.

3.3.4 Case IV: Elliptic setting with −α = −β = 1

Panels IVa and IVb of Fig. 3 summarize some properties of the computed instabilities in the
case of defocusing in both the x- and y-dimensions. The lower limit of the plot corresponds to
B = −(10−8), and so is just slightly away from the sn solution, as measured in the parameter B.
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The left boundary of the plots, where k = 0.01, represents a region in parameter space near to the
Stokes’ wave solutions, while k = 0.99 on the left boundary. In the limit as k → 1, the solutions
become gray solitons.

A distinct ridge of large instability is noticeable in the growth plot IVa. The ridge appears to
begin near the trivial limit k = 0 and B = 0, and remains close to the sn limit boundary (within
approximately .02 units) as k increases, to reach a global maximum near k = 0.02 and B = −0.0001.
The ridge then appears to decrease in amplitude as k increases towards 1. As in the setting above,
moving away from the sn-type boundary results in a rapid increase of Ωmax. Moving away from
the dn-type boundary results in a much slower increase in the value of Ωmax. The same is true
when moving away from the Stokes’ boundary, when B is larger than approximately 0.001. The
maximum exponential growth rate, Rmax = 7.6456, and the minimum, Rmin = 0.0001556, span a
slightly larger range of values than do the values of Ωmax in the panel above it. The maximum and
minimum values are obtained near (k,B) ≈ (0.01, 0.00009) and (k,B) ≈ (0.01,−1), respectively.
Both are located near to the Stokes’ wave boundary.

In the plot IVb, wavenumbers corresponding to Ωmax of IVa are given. It appears that a
majority of the large values of Ωmax are attributable to small ρ (long wave) perturbations. In
fact, the largest growth occurs for ρ = 0, the one-dimensional perturbation. In contrast, short-
wavelength two-dimensional perturbations with wavenumber ρ > 3 were associated with many of
the large Ωmax values in the previous plots.

4 Summary

In this paper, we considered the spectral instability of one-dimensional traveling-wave nontrivial-
phase (NTP) solutions of the cubic nonlinear Schrödinger equation. Such solutions are expressed
in terms of Jacobi elliptic functions. An exact spectral form of the linearized operator is truncated
and used to construct an associated generalized eigenvalue problem. The positive real part of the
resulting eigenvalues was used to determine that there are no spectrally stable NTP solutions.
Numerical results indicate a well-defined ridge of large growth rate located in the (k,B)-parameter
region associated with fully nontrivial-phase solutions. This means that perturbed NTP solutions
are more unstable than perturbed TP solutions, i.e. they exhibit larger exponential growth rates.
In addition, the numerical evidence indicates that exponential growth rates of dn-type solutions,
and to a lesser extent the Stokes’ wave solutions, are insensitive to transverse perturbation. The
growth of the cn-type and sn-type solutions appear to be quite sensitive to this perturbation. In
summary, numerical evidence suggests that all bounded, nontrivial-phase one-dimensional traveling-
wave solutions to the cubic NLS equation are unstable with respect to both one-dimensional and
transverse perturbations.

The National Science Foundation is acknowledged for its support (NSF-DMS 0139093).
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