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Abstract

We consider the two-dimensional cubic nonlinear Schrödinger (NLS) equation, which ad-
mits a large family of one-dimensional bounded traveling-wave solutions. All such stationary
solutions may be written in terms of an amplitude and a phase. Solutions with piecewise con-
stant phase have been well studied [19, 16, 11, 17]. Although some solutions are stable
under one-dimensional perturbations, no stable stationary solutions exist under
two-dimensional perturbations [14, 5]. Here we consider stability of the larger class of
solutions whose phase is dependent on the spatial dimension of the one-dimensional wave form.
These solutions are said to have nontrivial-phase (NTP). We study the spectral stability of such
NTP solutions numerically, using the spectrally based Hill’s method. We present evidence which
suggests that all such NTP solutions are unstable with respect to both one- and two-dimensional
perturbations. Instability occurs in all cases: for both the elliptic and hyperbolic NLS equations,
and in the focusing and defocusing case.

1 Introduction

The cubic nonlinear Schrödinger (NLS) equation in two spatial dimensions is given by

iψt + αψxx + βψyy + |ψ|2ψ = 0. (1)

The NLS equation is said be focusing or attractive in the x-dimension if α > 0. If α < 0, NLS
is said to be defocusing or repulsive in the x-dimension. Similarly, the sign of β leads to focusing
or defocusing in the y-dimension. The NLS equation is called hyperbolic if αβ < 0 and elliptic if
αβ > 0.

Equation (1) admits a large family of one-dimensional bounded traveling-wave solutions. All
such solutions, modulo Lie group symmetries [18], may be written in the form [4, 3]

ψ(x, t) = φ(x)eiθ(x)+iλt, (2)

where φ(x) and θ(x) are real-valued functions, and λ is a real constant. Solutions of the form (2)
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are possible if

φ2(x) = α
(

−2k2 sn 2(x, k) +B
)

, (3a)

θ(x) = c

∫ x

0
φ−2(ξ)dξ, (3b)

λ =
1

2
α(3B − 2(1 + k2)), (3c)

c2 = −α
2

2
B(B − 2k2)(B − 2), (3d)

where c is a real constant. Here k ∈ [0, 1] is the elliptic modulus of the Jacobi elliptic sine function,
sn (x, k). The function sn (x, k) is periodic if k ∈ [0, 1), with period given by L = 4K, where
K = K(k) is defined by

K(k) =

∫ π/2

0

(

1 − k2 sin2 x
)−1/2

dx, (4)

and is known as the complete elliptic integral of the first kind. When k = 0, sn (x, 0) = sin(x)
with L = 2π. As k approaches 1, sn (x, k) approaches tanh(x) and L approaches infinity [2].
Although φ(x) inherits the periodicity of sn (x, k), the solution ψ(x, t) is typically not L-periodic
in the x-dimension, because the periods of eiθ and φ are generally non-commensurate.

The solution ψ is said to have trivial-phase (TP) if θ(x) is (piecewise) constant and nontrivial-

phase (NTP) if θ(x) is not constant. Equivalently, the solution ψ has TP if c = 0, and has NTP
if c 6= 0. For every choice of α and β, (3) specifies a two-parameter family of NLS solutions in
the free parameters k and B. Without loss of generality, we choose both α and β to be ±1. The
phase contribution θ(x) given in (3b) implicitly depends on α and B in both (3a) and (3d). In
order for φ and θ to be real-valued functions, we need B ∈ [2k2, 2] if α = 1 or B ≤ 0 if α = −1.
Figure 1 includes the regions of (k,B)-parameter space that correspond to NTP solutions of the
elliptic and hyperbolic NLS equations. As c → 0, θ approaches a (piecewise) constant, and the
NTP solutions reduce to one of five types of TP solutions: (i) a Stokes’ plane wave, (ii) a cn-type
solution, (iii) a dn-type solution, (iv) an sn-type solution, (v) a soliton-type solution. The limiting
solutions correspond to boundaries of the regions in Fig. 1. Table 1 provides the values of k and
B that cause (2) to limit to the TP solutions, and also gives the explicit expression for ψ in the
TP limit. The gray solitons, which are NTP solutions (not TP solutions), result when
k = 1 and B < 0. An overview of these NLS solutions is given in [4, 3]. Details of the Jacobi
elliptic functions cn, dn and sn may be found in [2].

While both TP and NTP solutions are of interest, stability of TP solutions is well understood:
for example, see [19, 16, 15, 9, 17, 8]. While some TP solutions are stable under one-
dimensional perturbations (the bright soliton [14] and sn-type solutions [5]), all TP
solutions are known to be unstable under two-dimensional perturbations. We know of
only Infeld and Ziemkiewicz’s paper [11] which considers the stability of NTP solutions of the NLS
equation. Results?

The (k,B)-parameter space of TP solutions is essentially one-dimensional; it forms the boundary
of the NTP (k,B)-parameter spaces shown in Fig. 1. The (k,B)-parameter space of the NTP
solution is fully two-dimensional. The large parameter space of the NTP setting, coupled
with the fact that some TP solutions are stable with respect to some perturbations,
gave hope that stable NTP solutions might exist. f The more difficult linear stability
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Figure 1: Admissible parameter space for solutions of the form given in (2) for (a) focusing (α = 1)
and (b) defocusing (α = −1) regimes. The gray interior region corresponds to NTP solutions. The
region in the defocusing regime is not bounded below.

problem and the large parameter space that needs to be explored makes the NTP setting more
complex than the TP setting.

In this paper, we investigate the spectral stability of all NTP solutions (2), for all choices of
α = ±1 and β = ±1. That is, we compute the eigenvalues of an approximate spectral problem in
order to identify possible growing modes in the linear stability problem. No spectrally stable NTP
solutions were found, but the search did provide important stability information.

2 The linear stability problem

In order to study the linear stability of NTP solutions of the NLS equation, we consider perturba-
tions of the form

ψ
p
(x, y, t) = (φ(x) + εu(x, y, t) + iεv(x, y, t) + O(ε2)) eiθ(x)+iλt, (5)

where u(x, y, t) and v(x, y, t) are real-valued functions, ε is a small real parameter and φ(x) eiθ(x)+iλt

is a NTP solution of NLS. Substituting (5) in (1), linearizing and separating real and imaginary
parts leads to

λu− 3γφ2u− βuyy + αc2
1

φ4
u− 2αc

1

φ3
φxv + 2αc

1

φ2
vx − αuxx = −vt, (6a)

λv − γφ2v − βvyy + αc2
1

φ4
v + 2αc

1

φ3
φxu− 2αc

1

φ2
ux − αvxx = ut. (6b)

Since (6) does not depend on y or t explicitly, we may assume that u(x, y, t) and v(x, y, t) have
the forms

u(x, y, t) = U(x, ρ,Ω) eiρy+Ωt + c.c., (7a)
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(k,B) value Solution type ψ

α = 1 k = 0 B ∈ [2k2, 2] Stokes’ plane wave
√
B ei(qx+λt)

k ∈ (0, 1) B = 2k2 cn-type
√

2 k cn (x, k) ei(2k2
−1)t

k ∈ (0, 1) B = 2 dn-type
√

2 dn (x, k) ei(2−k2)t

k = 1 B = 2 bright soliton
√

2 sech(x)eit

α = −1 k = 0 B ≤ 0 Stokes’ plane wave
√
B ei(qx+λt)

k ∈ (0, 1) B = 0 sn-type
√

2 k sn (x, k)ei(1+k2)t

k = 1 B = 0 dark soliton
√

2 tanh(x) ei2t

Table 1: Parameter values (k,B) which reduce NTP solutions to TP solutions. Here q is an
arbitrary real constant.

v(x, y, t) = V (x, ρ,Ω) eiρy+Ωt + c.c., (7b)

where ρ is a real constant, U(x) and V (x) are complex-valued functions, Ω is a complex constant
and c.c. denotes complex conjugate. Notice that ρ is the transverse wavenumber of the perturbation
and Ω is the exponential growth rate associated with ρ. If bounded U, V exist such that Ω has
a positive real part, then the amplitudes of the perturbations grow exponentially in time and the
unperturbed solution is said to be unstable.

Upon substitution, (6) yields the spectral problem

λU − 3γφ2U + βρ2U + αc2
1

φ4
U − 2αc

1

φ3
φxV + 2αc

1

φ2
Vx − αUxx = −ΩV, (8a)

λV − γφ2V + βρ2V + αc2
1

φ4
V + 2αc

1

φ3
φxU − 2αc

1

φ2
Ux − αVxx = ΩU. (8b)

If c = 0, then (8) reduces to the stability analysis of TP solutions. This case is examined in [16, 11,
1, 13, 6, 5] and others. Using the linear system (8), we are now able to investigate the stability of
the perturbed NTP solution numerically. We only consider the stability of NTP solutions in this
paper.

3 Numerical investigation of spectral stability

The main difficulty for the numerical investigation of (8) is the size of the parameter space involved.
For every choice of the equations parameters α, β and solution parameter pairs (k,B), the spectrum
of (8) needs to computed for a range of ρ values in order to determine stability or to analyze
any instabilities. An efficient numerical method is necessary. Hill’s method [7], which exhibits
exponential convergence, allows for the systematic exploration of the large phase space encountered
here.
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3.1 Hill’s method

To apply Hill’s method, Fourier expansions are needed for all coefficients of (8). Using the complex
Fourier form, we have

φ2(x) =
∞
∑

n=−∞

Qne
i2nπx/L, φ−2(x) =

∞
∑

n=−∞

Rne
i2nπx/L,

φ−4(x) =

∞
∑

n=−∞

Sne
i2nπx/L, φ−3(x)φ′(x) =

∞
∑

n=−∞

Tne
i2nπx/L,

(9)

where Qn, Rn, Sn and Tn are the Fourier coefficients. Note that φ2(x) has period L/2 and that
φ(x) is never zero except in the TP limit cases.

The periodicity of the coefficients in (8) allows us to decompose the eigenfunction components
U and V of (8) in a Fourier-Floquet form

U(x) = eiµx
∞
∑

n=−∞

Une
inπx/L and V (x) = eiµx

∞
∑

n=−∞

Vne
inπx/L. (10)

The form of U and V in (10) follows from Floquet’s theorem and the observation that we seek
eigenfunctions, which are bounded by definition. This decomposition has the benefit of admitting
both L-periodic and L-anti-periodic eigenfunctions when µ = 0. Recall that ψ is typically only
quasiperiodic. Allowing µ to be different from 0 gives rise to solutions that are either quasiperiodic
or have period greater than L.

Substitution of (9) and (10) into (8) and equating Fourier coefficients allows us to write equations
for Un and Vn as a coupled bi-infinite system of difference equations given by

−
(

λ+ βρ2 − α

(

iµ+
inπ

L

)2
)

Un + 3γ
∞
∑

m=−∞

Qn−m

2

Um − αc2
∞
∑

m=−∞

Sn−m

2

Um

+ 2αc

∞
∑

m=−∞

Tn−m

2

Vm − 2αc

(

iµ+
inπ

L

) ∞
∑

m=−∞

Rn−m

2

Vm = ΩVn, (11a)

(

λ+ βρ2 − α

(

iµ+
inπ

L

)2
)

Vn − γ

∞
∑

m=−∞

Qn−m

2

Vm + αc2
∞
∑

m=−∞

Sn−m

2

Vm

+ 2αc

∞
∑

m=−∞

Tn−m

2

Um − 2αc

(

iµ+
inπ

L

) ∞
∑

m=−∞

Rn−m

2

Um = ΩUn, (11b)

for all integers n. The system of equations (11) is equivalent to the original system (8). Here
µ ∈ [−π

K , π
K ) and Qn−m

2

= 0 if n−m
2 6∈ Z, with R(·), S(·) and T(·) defined similarly.

In practice, a pre-multiplication of the linear system by φ4 allows for the exact cosine series
expansion of φ2, φ4 and φ6 to be used. This follows from the differential equations for sn (x, k)
and Jacobi’s series expansion of sn 2(x, k) [12]. This pre-multiplication transforms the original
eigenvalue problem into a generalized eigenvalue problem [10].
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Parameter Description Value

k Elliptic modulus linspace(0,1,65)

B Shift
For α = −1 : −logspace(−8, 0, 65)
For α = 1 : (2k2 + logspace(−8, 0, 65)) ∩ (2k2, 2)

N Fourier cutoff
For α = −1 : 15 + ceil(5k5)
For α = 1 : 10 + ceil(25k10)

ρ Perturbation wavenumber linspace(0,4,65)

µ Floquet parameter linspace(− π
K
, π
K
, 21)

Table 2: Parameter values and ranges used in numerical experiments. Only perturbed NTP solu-
tions are considered.

3.2 Numerical experiments

By choosing a finite number of Fourier modes, the exact bi-infinite system (11) is truncated. We
explicitly construct and compute approximations to the spectral elements of (8) by finding the
eigenvalues of the truncated version of (11). We consider all four cases individually: (I) focusing
in both x and y (α = β = 1), (II) focusing in x and defocusing in y (α = −β = 1), (III) defocusing
in x and focusing in y (−α = β = 1) and finally, (IV) defocusing in both x and y (−α = −β = 1).

In each case, a large number of parameter values in the two-dimensional parameter space shown
in Fig. 1 were explored numerically. The (k,B)-parameter values considered correspond to fully
NTP solutions, and do not include TP solutions. Approximately 5.2 million generalized eigenvalue
problems were considered, the size of each determined by the cutoff mode N of the underlying
Fourier series. A truncation to N positive Fourier modes reduces the exact bi-infinite system
(11) to an approximate (4N + 2)-dimensional problem. For several choices of k and B, a value
of N = N(k,B) was chosen to ensure that the resulting eigenvalues had converged to within a
measured tolerance. A simple polynomial was used to fit this data. This information, and details
related to other parameter ranges used in the experiments, are included in Table 2. In the table,
k is the elliptic modulus (3), B is the offset parameter and may be interpreted as a measure of the
nontrivial-phase quantity θ, (4N+2) is the matrix dimension used to approximate the full operator,
ρ is the wavenumber of the perturbation in the y-dimension, and µ is the Floquet exponent.
Lastly, linspace(a, b, m) is a linearly spaced vector from a to b of length m, logspace(a, b, m) is a
logarithmically spaced vector from 10a to 10b of length m and ceil(x) is the smallest integer not
less than x.

3.3 Observations

First and foremost, it should be stated that none of the NTP solutions considered here were
found to be spectrally stable under one-dimensional (ρ = 0, i.e. longitudinal) or two-dimensional
(ρ 6= 0) perturbations. This establishes, at least numerically, that all one-dimensional traveling-
wave solutions of NLS of the form given by (2) are spectrally unstable with respect to both one- and
two-dimensional perturbations. At this point, it remains to investigate the nature of the instabilities
and their corresponding growth rates, so as to better understand the dynamics of this important
class of solutions of the NLS equation.

Using Hill’s method we numerically considered the instabilities due to perturbations with
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wavenumber ρ ∈ [0, 4]. Note the ρ = 0 corresponds to one-dimensional, i.e. purely longitudi-
nal, perturbations. For each NLS equation (i.e. for each choice of α, β = ±1), and solution (i.e.
each parameter pair (k,B)), and for each perturbation of wavenumber ρ, a sequence of a sequence
of Floquet parameters µ was chosen from the interval [− π

K ,
π
K ). The generalized eigenvalues and

eigenvectors were computed the matrix that results from the truncated version of (11). The eigen-
values are approximations of spectral elements of (8), and an approximation of the corresponding
eigenfunctions may be reconstructed from the eigenvectors.

Since a single eigenvalue with positive real part leads to instability of the system, the eigenvalue
with largest real part over all choices of µ was recorded for each (k,B, ρ) triplet. That is, we compute

Ωgrowth(k,B, ρ) = max
µ∈[−π/K,π/K]

Re [ Ω(k,B, ρ, µ)] , (12)

which we call the (most unstable) growth rate. The constant Ωgrowth represents the largest expo-
nential growth rate a given NTP solution with parameters (k,B) will experience when perturbed
with transverse wavenumber ρ. We reduce the dimension further by computing the largest such
growth rate over all sampled perturbation wavenumbers ρ. This quantity,

Ωmax(k,B) = max
ρ∈[0,4]

Ωgrowth(k,B, ρ), (13)

the maximal growth rate over all ρ, is plotted in the first columns of Figs. 2 and 3. The constant
Ωmax(k,B) represents the maximal exponential growth rate that a solution with parameters (k,B)
can undergo in the range examined, and allows us to determine the perturbation to which the NTP
solution is spectrally the most unstable. We also recorded the minimum growth rate over all ρ,

Ωmin(k,B) = min
ρ∈[0,4]

Ωgrowth(k,B, ρ), (14)

to verify that all solutions are unstable with respect to every sampled perturbation.
Every point plotted in Figs. 2 and 3 corresponds to an NLS solution for which we computed

the linear stability analysis, and the boundaries in the figures are the boundaries of the regions
represented in Fig. 1 and correspond to limiting TP solutions. Fig. 2 corresponds to the x-focusing
(α = 1) parameter range (k,B) = (0, 1) × (2k2, 2) in the α = 1 case of Fig. 1(a). The one-to-
one transform Tf (B) = (B − 2k2)/(2 − 2k2) is used to normalize the range of B. This maps the
interval [2k2, 2] to [0, 1]. Fig. 3 corresponds to the x-defocusing (α = −1) parameter range of
(k,B) = (0, 1) × (−1, 0) shown in Fig. 1(b). The transform Td(B) = −B is used in Fig. 3. A log10

scale is used in the vertical dimension of Figs. 2 and 3. This causes the panels of Fig. 2 to become
increasing sparse in their lower right corners. The right-hand panels of Figs. 2 and 3 indicate
the wavenumber ρ that leads to maximal growth shown in the left-hand panels. Recall that our
computations were truncated at ρ = 4.

3.3.1 Case I: Elliptic setting with α = β = 1

Panels Ia and Ib of Fig. 2 summarize some properties of the computed instabilities in the case
of focusing in both the x- and y-dimensions. The lower boundary of the plot corresponds to
B = 2k2 +(10−8), and is therefore only slightly away (in the parameter space of B) from a cn-type
solution. The upper boundary is close to dn-type solutions, with B = 1.99. The left boundary of
the plots, where k = 0.01, represents a region in parameter space near to Stokes’ wave solutions.
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The entire right-hand boundary, where k = 0.99, is near to the bright soliton limit case which
occurs at (k,B) = (1, 2).

A distinct ridge of large instability is noticeable in the plot of Ωmax in panel Ia of Fig. 2. The
ridge appears to begin near the zero solution at (k,B) = (0, 0), and remains close to the cn limit
boundary (within approximately .02 units) as k increases. Moving away from the cn boundary
results in the rapid increase of Ωmax. Movement away from the dn boundary results in a much
slower increase in the value of Ωmax, as does moving away from the Stokes’ wave boundary for B
larger than approximately 0.001. The maximum value of Ωmax over the sampled (k,B) space, given
by Rmax = 5.666, is reached near (k,B) ≈ (0.99, 1.98). The minimum (Rmin = 0.015693) occurs for
(k,B) ≈ (0.01, 0.01) for ρ = 4. Since ψ ≡ 0 is a stable solution of the NLS equation, this minimum
goes to zero as (k,B) → 0.

In panel Ib, the wavelength corresponding to the maximal growth of Ia is given. In this case,
the maximum instability occurs for the shortest wavelength samples, ρ = 4. This indicates that
there is a strong short-wavelength instability.

3.3.2 Case II: Hyperbolic setting with α = −β = 1

Panels IIa and IIb of Fig. 2 summarize some properties of the computed instabilities in the case
of focusing in the x-dimension and defocusing in the y-dimension. The lower boundary of the plot
corresponds to B = 2k2 +(10−8), and is therefore only slightly away (in the parameter space of B)
from a cn-type solution. The upper boundary is close to dn-type solutions, with B = 1.99. The
left boundary of the plots, where k = 0.01, represents a region in parameter space near to Stokes’
wave solutions. The entire right-hand boundary, where k = 0.99, is near to the bright soliton limit
case which occurs at (k,B) = (1, 2).

As in Case I, a ridge of large growth rate is noticeable in the growth plot included in panel IIa.
The ridge appears to begin near the zero solution at (k,B) = (0, 0), and remains close to the cn-type
limit boundary (within approximately .02 units) as k increases. This ridge has a local minimum
near k = 0.7 and increases to a global (over all admissible (k,B)-parameter space) maximum near
k = 0.96. As in the setting above, moving away from the cn-type boundary results in a rapid
increase of Ωmax. Moving away from the dn boundary results in a much slower increase in the value
of Ωmax. For B > 0.001, moving away from the boundary result in a similar slow increase in Ωmax.
For k > 0.96, the overall decrease in Ωmax is consistent with stability results for the
TP bright soliton limit [14]. The maximum (Rmax = 6.1141) and minimum (Rmin = 0.012535)
growth rates span a slightly larger range than the similar values in Fig. 2. These are centered near
(k,B) ≈ (0.01, 0.01) and (k,B) ≈ (0.96, 1.98), respectively.

In panel IIb, the wavelength corresponding to the maximal growth Rmax of IIa are given. In
this case, the maximum instability of Rmax occurs for ρ = 3.375. The surface represented by IIb
appears to be much smoother than the surface of Ib.

3.3.3 Case III: Hyperbolic setting with −α = β = 1

Panels IIIa and IIIb of Fig. 3 summarize some properties of the computed instabilities in the case
of defocusing in the x-dimension and focusing y-dimension. The lower limit of the plot corresponds
to B = −(10−8), and so is just slightly away from the sn-type solution. The left boundary of the
plots, where k = 0.01, represents a region in parameter space near to Stokes’ wave solutions, while
k = 0.99 on the right boundary is near to the gray soliton limit.
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Figure 2: Focusing in the x-dimension. Here a) contains surface plots of Ωmax vs. (k,B) and
b) contains the surface plots of the wavenumber ρ corresponding to Ωmax vs. (k,B). Rmax =
maxk,B Ωmax and Rmin = mink,B Ωmin. White space corresponds to (k,B)-parameter space that
was not sampled.

A distinct ridge of large instability is noticeable in the growth plot included in panel IIIa.
The ridge appears to begin near the zero solution limit at (k,B) = (0, 0), and remains close to
the sn limit boundary (within approximately .02 units) as k increases. It quickly reaches the
global maximum (over all admissible (k,B)-parameter space) of Rmax = 7.6375 near k = 0.02 and
B = −0.0001. The ridge then appears to decrease in amplitude as k increases towards 1. Moving
away from the sn-type boundary results in a rapid increase of Ωmax. Moving away from the dn-type
boundary results in a much slower increase in the value of Ωmax. Similarly, there is much slower
increase when moving away from the Stokes’ wave limit for B > 0.001. The maximum exponential
growth rate, Rmax = 7.6375, occurs for (k,B) ≈ (0.02, 0.00001). The minimum exponential growth,
Rmin = 0.015578 is found near (k,B) ≈ (0.01, 0.9). Both the maximum and minimum are located
near the Stokes’ wave boundary. By restricting ρ = 0 and allowing B to approach zero,
Ωmax → 0, and the stability result of the sn-type TP solution of [5] is recovered.

The plot IIIa indicates short-wave perturbations lead to large values of Ωmax. The largest
growth occurs for a perturbation with wavenumber of ρ = 3.625.
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3.3.4 Case IV: Elliptic setting with −α = −β = 1

Panels IVa and IVb of Fig. 3 summarize some properties of the computed instabilities in the
case of defocusing in both the x- and y-dimensions. The lower limit of the plot corresponds to
B = −(10−8), and so is just slightly away from the sn-type solution. The left boundary of the
plots, where k = 0.01, represents a region in parameter space near to Stokes’ wave solutions, while
k = 0.99 on the right boundary is near to the gray soliton limit.

A distinct ridge of large instability is noticeable in the growth plot included in panel IVa. The
ridge appears to begin near the trivial limit k = 0 and B = 0, and remains close to the sn limit
boundary (within approximately .02 units) as k increases, to reach a global maximum near k = 0.02
and B = −0.0001. The ridge then appears to decrease in amplitude as k increases towards 1. As
in Case III, moving away from the sn-type boundary results in a rapid increase of Ωmax. Moving
away from the dn-type boundary results in a much slower increase in the value of Ωmax. The same
is true when moving away from the Stokes’ boundary, when B is larger than approximately 0.001.
The maximum exponential growth rate, Rmax = 7.6456, and the minimum, Rmin = 0.0001556,
span a slightly larger range of values than do the values of Ωmax in panel IIIa). The maximum and
minimum values are obtained near (k,B) ≈ (0.01, 0.00009) and (k,B) ≈ (0.01,−1), respectively.
Both are located near to the Stokes’ wave boundary. As in Case III, restricting ρ = 0 and
allowing B to approach zero results in Ωmax → 0, and the stability result of [5] for the
sn-type TP solution is recovered.

In panel IVb, wavenumbers corresponding to Ωmax of IVa are given. It appears that a majority
of the large values of Ωmax are attributable to small ρ (long-wave) perturbations. In fact, the
largest growth occurs for ρ = 0, the one-dimensional perturbation. In contrast, short-wavelength
two-dimensional perturbations with wavenumber ρ > 3 were associated with many of the large
Ωmax values in the previous plots.

4 Summary

In this paper, we considered the spectral instability of one-dimensional traveling-wave nontrivial-
phase (NTP) solutions of the cubic nonlinear Schrödinger equation. Such solutions are expressed
in terms of Jacobi elliptic functions. An exact spectral form of the linearized operator is truncated
and used to construct an associated generalized eigenvalue problem. The positive real parts of the
resulting eigenvalues were used to determine that there are no spectrally stable NTP solutions.

Numerical results indicate a well-defined ridge of large growth rate located in the (k,B)-
parameter region associated with fully nontrivial-phase solutions. This means that perturbed NTP
solutions are more unstable than perturbed TP solutions, i.e. for a given transverse wavenumber
ρ they exhibit larger exponential growth rates. Also, the exponential growth rate Ωmax in-
creases quickly when moving away from the sn- and cn-type solutions, and increases
much more slowly when moving away from the dn-type and Stokes’ wave solutions.
We interpret this to mean that solutions near to the sn- and cn-type solutions are
sensitive to small changes in B. For a fixed k, stability of dn-type solutions are less
sensitive to changes in B than the cn-type solutions. Near to the Stokes’ wave, changes
in k result in a relatively minor increase of Ωmax, as long as the initial solution is not
close to the zero solution.

In summary, numerical evidence suggests that all bounded, nontrivial-phase one-dimensional
traveling-wave solutions to the cubic NLS equation are unstable with respect to both one-dimensional
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Figure 3: Defocusing in the x-dimension. Here a) contains surface plots of Ωmax vs. (k,B) and
b) contains surface plots of the ρ corresponding to Ωmax vs. (k,B). Rmax = maxk,B Ωmax and
Rmin = mink,B Ωmin.

11



(longitudinal) and two-dimensional perturbations.
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