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Abstract
The two-dimensional cubic nonlinear Schrödinger equation admits a large
family of one-dimensional bounded travelling-wave solutions. All such
solutions may be written in terms of an amplitude and a phase. Solutions with
piecewise constant phase have been well studied previously. Some of these
solutions were found to be stable with respect to one-dimensional perturbations.
No solutions are stable with respect to two-dimensional perturbations. We
consider stability of the larger class of solutions whose phase is dependent on
the spatial dimension of the one-dimensional wave form. We study the spectral
stability of such nontrivial-phase solutions numerically, using Hill’s method.
We present evidence which suggests that all such nontrivial-phase solutions
are unstable with respect to both one- and two-dimensional perturbations.
Instability occurs in all cases: for both the elliptic and hyperbolic nonlinear
Schrödinger equations, and in the focusing and defocusing cases.

PACS numbers: 02.30.Jr, 0.70.Hm, 42.65.Lm, 03.75.Nt, 92.10.Hm

1. Introduction

The cubic nonlinear Schrödinger (NLS) equation in two spatial dimensions is given by

iψt + αψxx + βψyy + |ψ |2ψ = 0. (1)

The NLS equation is said be focusing or attractive in the x dimension if α > 0. If α < 0, the
NLS equation is said to be defocusing or repulsive in the x dimension. Similarly, the sign of
β leads to focusing or defocusing in the y dimension. The NLS equation is called hyperbolic
if αβ < 0 and elliptic if αβ > 0. The elliptic NLS equation is used to model the propagation
of pulses in optical fibres [1], Langmuir waves in plasmas [2] and in the description of Bose–
Einstein condensates [3, 4]. The hyperbolic NLS equation is used to describe gravity waves
in deep water [5], cyclotron waves in plasmas [6] and optical waves in planar waveguides [7].
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Equation (1) admits a large family of one-dimensional bounded travelling-wave solutions.
All such solutions, up to Lie group symmetries [8], may be written in the form

ψ(x, t) = φ(x) eiθ(x)+iλt , (2)

where φ(x) and θ(x) are real-valued functions, and λ is a real constant [9, 10]. Solutions of
the form (2) are possible if

φ2(x) = α(−2k2 sn 2(x, k) + B), (3a)

θ(x) = c

∫ x

0
φ−2(ξ) dξ, (3b)

λ = 1

2
α(3B − 2 − 2k2), (3c)

c2 = −α2

2
B(B − 2k2)(B − 2), (3d)

where B and c are real constants. Here k ∈ [0, 1] is the elliptic modulus of the Jacobi elliptic
sine function, sn (x, k). The function sn (x, k) is periodic if k ∈ [0, 1), with period given by
L = 4K , where K = K(k) is defined by

K(k) =
∫ π/2

0
(1 − k2 sin2 x)−1/2 dx, (4)

and is known as the complete elliptic integral of the first kind. When k = 0, sn (x, 0) = sin(x)

with L = 2π . As k approaches 1, sn (x, k) approaches tanh(x) and L approaches infinity [11].
Although φ(x) is periodic, the solution ψ(x, t) is typically not L-periodic in the x dimension,
because the periods of eiθ and φ are typically non-commensurate.

The solution ψ is said to have trivial-phase (TP) if θ(x) is (piecewise) constant and
nontrivial-phase (NTP) if θ(x) is not constant. Equivalently, the solution ψ has TP if c = 0,
and has NTP if c �= 0. For every choice of α and β, (3) specifies a two-parameter family of
NLS solutions with the free parameters k and B. Without loss of generality, we choose both
α and β to be ±1. The phase contribution θ(x) given in (3b) implicitly depends on α and B
in both (3a) and (3d). In order for φ and θ to be real-valued functions, we need B ∈ [2k2, 2]
if α = 1 or B � 0 if α = −1. Figure 1 displays the regions of (k, B)-parameter space that
correspond to NTP solutions of the focusing and defocusing NLS equations. By varying B so
that c → 0, θ approaches a (piecewise) constant, and the NTP solutions reduce to one of five
types of TP solutions: (i) a Stokes’ plane wave, (ii) a cn-type solution, (iii) a dn-type solution,
(iv) an sn-type solution and (v) a soliton-type solution. The limiting solutions correspond to
the boundaries of the regions in figure 1. Table 1 provides the values of k and B that cause
(2) to reduce to TP solutions, and also gives the explicit expression for ψ in the TP limit.
Grey solitons, all of which are NTP solutions, result when k = 1 and B < 0. An overview of
stationary NLS solutions is given in [9, 10]. Properties of the Jacobi elliptic functions cn, dn
and sn may be found in [11].

The stability analysis of TP solutions has been well investigated, see for example [12–17].
While some TP solutions are stable under one-dimensional perturbations (the bright soliton
[18, 19] and sn-type solutions [17]), all TP solutions are known to be unstable under two-
dimensional perturbations [17]. The only work with results regarding the stability of some
NTP solutions that we are familiar with is the work of Infeld and Ziemkiewicz [20]. In their
work, an additional damping term led to stable NTP solutions. However, without this term
all NTP solutions they considered were unstable; our results agree with this conclusion. The
work presented here differs from [20] in that we consider the entire parameter space of NTP
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Figure 1. Admissible parameter space for solutions of the form given in (2) for (a) focusing and
(b) defocusing regimes. The shaded interior region corresponds to NTP solutions. The region in
the defocusing regime is unbounded below.

Table 1. Parameter values (k, B) which reduce NTP solutions to TP solutions.

k value B value Solution type ψ

α = 1 k = 0 B ∈ [2k2, 2] Stokes’ plane wave
√

B eiλt

k ∈ (0, 1) B = 2k2 cn-type
√

2k cn (x, k) ei(2k2−1)t

k ∈ (0, 1) B = 2 dn-type
√

2 dn(x, k) ei(2−k2)t

k = 1 B = 2 bright soliton
√

2 sech(x) eit

α = −1 k = 0 B � 0 Stokes’ plane wave
√

B eiλt

k ∈ (0, 1) B = 0 sn-type
√

2 k sn(x, k) ei(1+k2)t

k = 1 B = 0 dark soliton
√

2 tanh(x) ei2t

solutions, so that all one-dimensional stationary solutions of the NLS equation have now been
investigated.

The (k, B)-parameter space of the NTP solution is two dimensional, whereas the (k, B)-
parameter space of TP solutions is essentially one dimensional; it forms the boundary of
the NTP (k, B)-parameter spaces shown in figure 1. Thus the TP solutions are only a co-
dimension one subset of all bounded travelling-wave solutions of (1). The aim of this work
is to investigate if (1) has any one-dimensional travelling-wave solutions that are stable with
respect to either one- or two-dimensional perturbations. Since no solutions are known that
are stable with respect to two-dimensional perturbations in the TP setting, we focus on such
perturbations, although one-dimensional perturbations are considered as a special case.

We investigate the spectral stability of all NTP solutions (2), for all choices of α = ±1
and β = ±1. Although all NTP solutions are found to be unstable, our investigations do
produce important information about the nature of the instabilities of these NTP solutions.

2. The linear stability problem

In order to study the linear stability of NTP solutions of the NLS equation, we consider
perturbed solutions of the form

ψp(x, y, t) = (φ(x) + εu(x, y, t) + iεv(x, y, t) + O(ε2)) eiθ(x)+iλt , (5)
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where u(x, y, t) and v(x, y, t) are real-valued functions, ε is a small real parameter and
φ(x) eiθ(x)+iλt is an NTP solution of NLS. Substituting (5) in (1), linearizing and separating
real and imaginary parts leads to

λu − 3γφ2u − βuyy + αc2 1

φ4
u − 2αc

1

φ3
φxv + 2αc

1

φ2
vx − αuxx = −vt , (6a)

λv − γφ2v − βvyy + αc2 1

φ4
v + 2αc

1

φ3
φxu − 2αc

1

φ2
ux − αvxx = ut . (6b)

Since (6) does not depend on y or t explicitly, we assume that u(x, y, t) and v(x, y, t) have
the forms

u(x, y, t) = U(x, ρ,�) eiρy+�t + c.c., (7a)

v(x, y, t) = V (x, ρ,�) eiρy+�t + c.c., (7b)

where ρ is a real constant, U(x) and V (x) are complex-valued functions, � is a complex
constant and c.c. denotes complex conjugate. Note that ρ is the transverse wavenumber of the
perturbation and � is the exponential growth rate associated with ρ. If bounded U,V exist
such that � has a positive real part, then the amplitudes of the perturbations grow exponentially
in time and the unperturbed solution is unstable.

Upon substitution, (6) yields the spectral problem

λU − 3γφ2U + βρ2U + αc2 1

φ4
U − 2αc

1

φ3
φxV + 2αc

1

φ2
Vx − αUxx = −�V, (8a)

λV − γφ2V + βρ2V + αc2 1

φ4
V + 2αc

1

φ3
φxU − 2αc

1

φ2
Ux − αVxx = �U. (8b)

If c = 0, then (8) reduces to the stability problem for TP solutions. This case is examined
in [13, 17, 20–23] and others. Using the linear system (8), we are able to investigate the
stability of all NTP solutions numerically. We only consider the stability of NTP solutions in
this paper. The reader may wish to consult some of the above-mentioned references for the
stability analysis of their limiting special cases.

3. The numerical investigation of spectral stability: Hill’s method

The main difficulty for the numerical investigation of (8) is the size of the parameter space
involved. For every choice of the equations parameters α, β and solution parameter pairs
(k, B), the spectrum of (8) needs to be computed for a range of ρ values in order to determine
stability or to analyse any instabilities. An efficient numerical method is necessary. Hill’s
method allows for the systematic and efficient exploration of the large phase space encountered
here, due to its exponential convergence [24].

To apply Hill’s method, Fourier expansions are needed for all coefficient functions of (8).
Using the complex Fourier form, we have

φ2(x) =
∞∑

n=−∞
Qn ei2nπx/L, φ−2(x) =

∞∑
n=−∞

Rn ei2nπx/L,

φ−4(x) =
∞∑

n=−∞
Sn ei2nπx/L, φ−3(x)φ′(x) =

∞∑
n=−∞

Tn ei2nπx/L,

(9)
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where Qn,Rn, Sn and Tn are Fourier coefficients. Note that φ2(x) has period L/2 and that
φ(x) is never zero except in some TP limit cases.

The periodicity of the coefficient functions in (8) allows us to decompose the eigenfunction
components U and V of (8) in a Fourier–Floquet form

U(x) = eiµx

∞∑
n=−∞

Un einπx/L and V (x) = eiµx

∞∑
n=−∞

Vn einπx/L, (10)

where µ ∈ [−π
K

, π
K

)
. The form of U and V in (10) follows from Floquet’s theorem and the

observation that eigenfunctions are bounded, by definition. This decomposition has the benefit
of admitting both L-periodic and L-anti-periodic eigenfunctions when µ = 0. Recall that ψ

is typically only quasiperiodic. Allowing µ to be different from 0 gives rise to solutions that
are either quasiperiodic or have period greater than 2L.

Substitution of (9) and (10) into (8) and equating Fourier coefficients allows us to write
equations for Un and Vn as a coupled bi-infinite system of difference equations given by

−
(

λ + βρ2 − α
(

iµ +
inπ

L

)2
)

Un + 3γ

∞∑
m=−∞

Qn−m
2

Um − αc2
∞∑

m=−∞
Sn−m

2
Um

+ 2αc

∞∑
m=−∞

Tn−m
2

Vm − 2αc
(

iµ +
inπ

L

) ∞∑
m=−∞

Rn−m
2

Vm = �Vn, (11a)

(
λ + βρ2 − α

(
iµ +

inπ

L

)2
)

Vn − γ

∞∑
m=−∞

Qn−m
2

Vm + αc2
∞∑

m=−∞
Sn−m

2
Vm

+ 2αc

∞∑
m=−∞

Tn−m
2

Um − 2αc
(

iµ +
inπ

L

) ∞∑
m=−∞

Rn−m
2

Um = �Un, (11b)

for all integers n. Here Qn−m
2

= 0 if n−m
2 �∈ Z, with R(·), S(·) and T(·) defined similarly. The

system of equations (11) is equivalent to the original system (8).

3.1. Remarks

• In practice, a pre-multiplication of the linear system by φ4 allows for the exact Fourier
series expansion of φ2, φ4 and φ6 to be used. This follows from the differential equations
for sn (x, k) and Jacobi’s series expansion of sn 2(x, k) [25]. This pre-multiplication
transforms the original eigenvalue problem into a generalized eigenvalue problem [26].

• Note that Hill’s methods enables one to compute the spectrum of a linear operator with
periodic coefficients. Despite the fact that the solution (2) is typically quasiperiodic, the
coefficient functions of the linear stability problem (8) are always periodic.

4. Numerical experiments

By choosing a finite number of Fourier modes, the exact bi-infinite system (11) is truncated.
We explicitly construct and compute approximations to the spectral elements (i.e. eigenvalues
or elements of the continuous spectrum) of (8) by finding the eigenvalues of the truncation
of (11). We consider all four cases individually: (i) focusing in both x and y (α = β = 1),
(ii) focusing in x and defocusing in y (α = −β = 1), (iii) defocusing in x and focusing in y

(−α = β = 1) and finally, (iv) defocusing in both x and y (−α = −β = 1).
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Table 2. Parameter values and ranges used in numerical experiments. Only perturbations of NTP
solutions are considered.

Parameter Description Value

k Elliptic modulus linspace(0, 1, 65)

B Shift For α = −1 : −logspace(−8, 0, 65)

For α = 1 : (2k2 + logspace(−8, 0, 65)) ∩ (2k2, 2)

N Fourier cutoff For α = −1 : 15 + ceil(5k5)

For α = 1 : 10 + ceil(25k10)

ρ Perturbation wavenumber linspace(0, 4, 65)

µ Floquet parameter linspace
(− π

K
, π
K
, 21

)

In each case, a large number of parameter values in the two-dimensional parameter
space shown in figure 1 were explored numerically. The (k, B)-parameter values considered
correspond to NTP solutions, and do not include TP solutions or grey solitons. Approximately
5.2 million generalized eigenvalue problems were considered, the size of each determined by
the cutoff mode N of the underlying Fourier series. A truncation to N positive Fourier modes
reduces the exact bi-infinite system (11) to an (4N + 2)-dimensional approximate problem.
For several choices of k and B, a value of N = N(k, B) was chosen to ensure that the resulting
eigenvalues had converged to within a measured tolerance. A simple polynomial was used
to fit these data. This information, and details related to other parameter ranges used in the
experiments, are included in table 2. In the table, k is the elliptic modulus and B is the offset
parameter (as in (3)), (4N+2) is the dimension used to approximate (8), ρ is the wavenumber of
the perturbation in the y-dimension and µ is the Floquet exponent. Lastly, linspace(a, b, m)

is a linearly spaced vector from a to b of length m, logspace(a, b, m) is a logarithmically
spaced vector from 10a to 10b of length m and ceil(x) is the smallest integer greater than or
equal to x.

5. Observations from the numerical investigation

First and foremost, it should be stated that none of the NTP solutions considered here were
found to be spectrally stable under one-dimensional (ρ = 0) or two-dimensional (ρ �= 0)

perturbations. This establishes, at least numerically, that all one-dimensional travelling-wave
solutions of NLS of the form (2) are spectrally unstable with respect to either one- or two-
dimensional perturbations. At this point, it remains to investigate the nature of the instabilities
and their corresponding growth rates, so as to better understand the dynamics of this important
class of solutions of the NLS equation.

Using Hill’s method we numerically considered the instabilities due to perturbations with
wavenumber ρ ∈ [0, 4]. Note that ρ = 0 corresponds to one-dimensional perturbations. For
each NLS equation (i.e. for each choice of α, β = ±1), and solution (i.e. each parameter
pair (k, B)), and for each perturbation of wavenumber ρ, an equally-spaced sequence of
Floquet parameters µ was chosen from the interval

[− π
K

, π
K

]
. The generalized eigenvalues

and eigenvectors were computed for the matrix that results from a truncation of (11). The
generalized eigenvalues are approximations of spectral elements of (8), and an approximation
of the corresponding eigenfunctions may be reconstructed from the eigenvectors.

Since a single eigenvalue with positive real part leads to instability of the system, the
approximate eigenvalue with largest real part over all choices of µ was recorded for each
(k, B, ρ) triplet. That is, we compute

�growth(k, B, ρ) = max
µ∈[−π/K,π/K]

Re[�(k, B, ρ, µ)], (12)
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(Ia) Ωmax with (α, β) = (1,+1)
(Ib) Corresponding ρ, (α, β) = (1,+1)
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(IIa) Ωmax with (α, β) = (1,−1) (IIb) Corresponding ρ, (α, β) = (1,−1)
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Figure 2. Focusing in the x dimension. The first column contains surface plots of �max(k, B)

and the second column contains the surface plots of the maximizing wavenumber ρ(k, B).
Rmax = maxk,B �max and Rmin = mink,B �min. White space corresponds to (k, B)-parameter
space that was not sampled.

which we call the (most unstable) growth rate. The value �growth represents the largest
exponential growth rate a given NTP solution with parameters (k, B) will experience when
perturbed with the transverse wavenumber ρ. It also allows us to determine the perturbation
to which the NTP solution is spectrally the most unstable. We reduce the dimension further by
computing the largest such growth rate over all sampled perturbation wavenumbers ρ. This
quantity,

�max(k, B) = max
ρ∈[0,4]

�growth(k, B, ρ), (13)

the maximal growth rate over all ρ is plotted in the first columns of figures 2 and 3. The value
�max represents the maximal exponential growth rate that a solution with parameters (k, B)

can undergo in the range examined. We also recorded the minimum growth rate over all ρ,

�min(k, B) = min
ρ∈[0,4]

�growth(k, B, ρ), (14)

to verify that all solutions are unstable with respect to every sampled perturbation.
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(IIIa) Ωmax with (α, β) = (−1,+1) (IIIb) Corresponding ρ, (α, β) = (−1,+1)
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(IVa) Ωmax with (α, β) = (−1,−1) (IVb) Corresponding ρ, (α, β) = (−1,−1)
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Figure 3. Defocusing in the x dimension. The first column contains surface plots of
�max(k, B) and the second column contains surface plots of the maximizing wavenumber ρ(k, B).
Rmax = maxk,B �max and Rmin = mink,B �min.

Every point plotted in figures 2 and 3 corresponds to an NTP solution for which we
considered the linear stability analysis, and the boundaries in the figures are the boundaries
of the regions represented in figure 1, corresponding to limiting TP solutions. Figure 2
corresponds to the x-focusing (α = 1) parameter range (k, B) = (0, 1) × (2k2, 2) in the
α = 1 case of figure 1(a). The one-to-one transform Tf (B) = (B − 2k2)/(2 − 2k2) is used to
normalize the range of B. This maps the interval [2k2, 2] to [0, 1]. Figure 3 corresponds to the
x-defocusing (α = −1) parameter range of (k, B) = (0, 1) × (−1, 0) shown in figure 1(b).
The transform Td(B) = −B is used in figure 3. A log10 scale is used in the vertical dimension
of figures 2 and 3. This causes the panels of figure 2 to become increasing sparse in their
lower right corners. The right-hand side panels of figures 2 and 3 indicate the wavenumber ρ

that leads to maximal growth shown in the left-hand side panels. Recall that our computations
were limited to ρ ∈ [0, 4].

5.1. Case I: Elliptic setting with α = β = 1

Panels I(a) and I(b) of figure 2 summarize some properties of the computed instabilities in the
case of focusing in both the x and y dimensions. The lower boundary of the plot corresponds
to B = 2k2 + (10−8), and is therefore only slightly away (in the parameter space of B) from a
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cn-type solution. The upper boundary is close to dn-type solutions, with B = 1.99. The left
boundary of the plots, where k = 0.01, represents a region in parameter space near Stokes’
wave solutions. The entire right-hand side boundary, where k = 0.99, is near the bright soliton
limit case which occurs at (k, B) = (1, 2).

A distinct ridge of large instability is noticeable in the plot of �max in panel I(a) of
figure 2. The ridge appears to begin near the zero solution at (k, B) = (0, 0), and remains
close to the cn limit boundary (within approximately .02 units, remembering the log10 scaling)
as k increases. Moving away from the cn boundary results in the rapid increase of �max.
Movement away from the dn boundary results in a slower increase in the value of �max, as
does moving away from the Stokes’ wave boundary for B greater than approximately 0.001.
The maximum value of �max over the sampled (k, B) space, given by Rmax = 5.666, is reached
at (k, B) = (0.99, 1.98). This growth rate should be compared to the maximal growth rate of
the corresponding TP case [17] which is Rmax = 1. The minimum (Rmin = 0.015 693) occurs
for (k, B) = (0.01, 0.01) for ρ = 4. Note that this is on the boundary of the computational
domain and that at (k, B) = (0, 0), corresponding to the spectrally stable ψ ≡ 0 solution,
Rmin = 0.

In panel I(b), the wavelength corresponding to the maximal growth of Ia is given. In
this case, the maximum instability occurs for the shortest wavelength samples, ρ = 4. This
indicates that there is a strong short-wavelength instability.

5.2. Case II: hyperbolic setting with α = −β = 1

Panels IIa and IIb of figure 2 summarize some properties of the computed instabilities in the
case of focusing in the x dimension and defocusing in the y dimension. The lower boundary of
the plot corresponds to B = 2k2 + (10−8), and is therefore only slightly away (in the parameter
space of B) from a cn-type solution. The upper boundary is close to dn-type solutions, with
B = 1.99. The left boundary of the plots, where k = 0.01, represents a region in parameter
space near to Stokes’ wave solutions. The entire right-hand hide boundary, where k = 0.99,
is near to the bright soliton limit case which occurs at (k, B) = (1, 2).

As in Case I, a ridge of large growth rate is noticeable in the growth plot shown in panel
IIa. The ridge appears to begin near the zero solution at (k, B) = (0, 0), and remains close to
the cn-type limit boundary (within approximately .02 units, remembering the log10 scaling) as
k increases. This ridge has a local minimum near k = 0.7 and increases to a global (over all
admissible (k, B)-parameter space) maximum at k = 0.96. As in the setting above, moving
away from the cn-type boundary results in a rapid increase of �max. Moving away from
the dn boundary results in a slower increase in the value of �max. For B > 0.001, moving
away from the boundary result in a similar slow increase in �max. For k > 0.96, it appears
that the limiting value of �max is consistent with the bright soliton results of [18, 19]. The
maximum (Rmax = 6.1141) and minimum (Rmin = 0.012 535) growth rates span a slightly
larger range than the similar values in figure Ia. These occur at (k, B) = (0.01, 0.01) and
(k, B) = (0.96, 1.98), respectively. The maximal growth rate should be compared to the
maximal growth rate of the corresponding TP case [17] which is Rmax = 1.

In panel II(b), the wavelength corresponding to the maximal growth Rmax of II(a) is given.
In this case, the maximum instability of Rmax occurs for ρ = 3.375. The surface shown in
II(b) appears to be more smooth than the surface of I(b).

5.3. Case III: hyperbolic setting with −α = β = 1

Panels IIIa and IIIb of figure 3 summarize some properties of the computed instabilities in the
case of defocusing in the x dimension and focusing in the y dimension. The lower limit of
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the plot corresponds to B = −10−8, and so is just slightly away from the sn-type solution.
The left boundary of the plots, where k = 0.01, represents a region in parameter space near
Stokes’ wave solutions, while k = 0.99 on the right boundary is near the grey soliton limit.

A distinct ridge of large instability is noticeable in the growth plot displayed in panel
III(a). The ridge appears to begin near the zero solution limit at (k, B) = (0, 0), and remains
close to the sn limit boundary (within approximately .02 units, remembering the log10 scaling)
as k increases. It quickly reaches the global maximum (over all admissible (k, B)-parameter
space) of Rmax = 7.6375 at k = 0.02 and B = −0.0001. The ridge then decreases in
amplitude as k increases towards 1. Moving away from the sn-type boundary results in a rapid
increase of �max. Moving away from the dn-type boundary results in a slower increase in
the value of �max. Similarly, the increase is slower when moving away from Stokes’ wave
limit for B < −0.001. The maximum exponential growth rate, Rmax = 7.6375, occurs for
(k, B) = (0.02,−0.000 01). This growth rate should be compared to the maximal growth
rate of the corresponding TP case [27] which is Rmax = 1. The minimum exponential growth,
Rmin = 0.015 578, is found at (k, B) = (0.01,−0.9). Both the maximum and minimum
are located near Stokes’ wave boundary. By restricting ρ = 0 and allowing B to approach
zero, �max → 0, and the one-dimensional stability result of the sn-type TP solution of [17] is
recovered.

The plot III(b) indicates short-wave perturbations lead to large values of �max. The largest
growth occurs for a perturbation with wavenumber of ρ = 3.625.

5.4. Case IV: Elliptic setting with −α = −β = 1

Panels IV(a) and IV(b) of figure 3 summarize some properties of the computed instabilities in
the case of defocusing in both the x and y dimensions. The lower limit of the plot corresponds
to B = −10−8, and so is just slightly away from the sn-type solution. The left boundary of
the plots, where k = 0.01, represents a region in parameter space near Stokes’ wave solutions,
while k = 0.99 on the right boundary is near the grey soliton limit.

A distinct ridge of large instability is noticeable in the growth plot shown in panel IV(a).
The ridge appears to begin near the trivial limit k = 0 and B = 0, and remains close to
the sn limit boundary (within approximately .02 units, remembering the log10 scaling) as k
increases, to reach a global maximum at k = 0.02 and B = −0.0001. The ridge then appears
to decrease in amplitude as k increases towards 1. As in case III, moving away from the sn-type
boundary results in a rapid increase of �max. Moving away from the dn-type boundary results
in a slower increase in the value of �max. The same is true when moving away from Stokes’
boundary, when B is less than approximately − 0.001. The maximum exponential growth rate,
Rmax = 7.6456, and the minimum, Rmin = 0.000 1556, span a slightly larger range of values
than do the values of �max in panel III(a). The maximum and minimum values are obtained
at (k, B) = (0.01,−0.000 09) and (k, B) = (0.01,−1), respectively. Both are located near
Stokes’ wave boundary. The maximal growth rate should be compared to the maximal growth
rate of the corresponding TP case [27] which is Rmax ≈ 0.26. As in case III, restricting ρ = 0
and allowing B to approach zero results in �max → 0, and the one-dimensional stability result
of [17] for the sn-type TP solution is recovered.

In panel IVb, wavenumbers corresponding to �max of IVa are given. It appears that a
majority of the large values of �max are attributable to small-ρ (long-wave) perturbations.
In fact, the largest growth occurs for ρ = 0, the one-dimensional perturbation. This
should be contrasted with the three previous cases, where short-wavelength two-dimensional
perturbations with wavenumber ρ > 3 were associated with the largest �max values.
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6. Summary

In this paper, we considered the spectral instability of one-dimensional travelling-wave
nontrivial-phase (NTP) solutions of the cubic nonlinear Schrödinger equation. Such solutions
are expressed in terms of Jacobi elliptic functions. An exact spectral form of the linearized
operator is truncated and used to construct an associated generalized eigenvalue problem. The
positive real parts of the resulting eigenvalues were used to determine that there are no stable
NTP solutions of the NLS equation.

Numerical results indicate a well-defined ridge of large growth rate located in the (k, B)-
parameter region associated with nontrivial-phase solutions. This implies that the most
unstable NTP solutions are more unstable than any TP solution, in the sense that they exhibit
larger exponential growth rates. Further, for all cases the exponential growth rate �max

increases when moving away from the limiting TP solutions. This divergence is gradual in
some cases, but very sharp in other cases, as discussed above.

In summary, numerical evidence suggests that all bounded, nontrivial-phase one-
dimensional travelling-wave solutions of the cubic NLS equation are unstable with respect to
both one-dimensional and two-dimensional perturbations.
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