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Abstract. The Cauchy-Kowalevski Theorem is the foremost result
guaranteeing local existence and uniqueness for analytic quasilinear par-
tial differential equations with Cauchy initial data. The techniques of
Cauchy-Kowalevski may also be applied to initial value ordinary dif-
ferential equations. These techniques, when applied in the polynomial
ordinary differential equation setting, lead one naturally to a method in
which coefficients are easily computed in a recursive manner, and an ex-
plicit majorization which admits a clear a priori error bound. The error
bound depends only on immediately observable quantities of the system;
coefficients, initial conditions, and polynomial degree. The numerous
benefits of the polynomial system are noted for a specific example.

1. Introduction

The Cauchy-Kowalevski Theorem is the main local existence and unique-
ness theorem for analytic quasilinear partial differential equations (PDE)
with Cauchy initial data. Cauchy developed a proof in a restricted setting
by 1842 [2], and in 1875 Kowalevski presented the full result [10]; existence
of a unique solution to the general quasilinear system of partial differen-
tial equations given initial conditions prescribed on some non-characteristic
curve. In [7], a proof in the fully nonlinear setting is presented. The Cauchy-
Kowalevski argument is based on the construction of a power series solution,
in which the coefficients of the series expansion are reconstructed recursively,
and the method of majorants applied to verify that this solution converges
locally. Convergence is demonstrated by comparison with the analytic solu-
tion of an associated PDE.

Although the Picard-Lindelöf Theorem is the fundamental local existence
argument for a large class of initial value ordinary differential equations
(IVODE), in 1835 Cauchy demonstrated existence and uniqueness in the
ODE setting, applying a majorant based argument similar to that both
he and Kowalevski would later use in the PDE setting. That is, Cauchy
methods can be used to show that u satisfies the real analytic ODE dtu(t) =
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f(u(t)), where u(0) = u0 using a constructive approach, provided f(u) is
locally analytic near u0. A nice treatment may be found in [4].

Given that the power series solution is directly accessible via the Cauchy-
Kowalevski construction but that the method is rarely applied suggests prac-
tical difficulties. In fact, the coefficients can be tedious to construct as typ-
ically posed, as is a key constant in the comparison solution. In this paper,
we demonstrate that a subtle recasting of the ODE system meliorates these
difficulties: the coefficients of the analytic solution become remarkably easy
to recover, and a computable choice of the key constant leads to an a priori
error bound. To make these ideas clear, we consider the quasilinear IVODE

dtu(t) = f(u(t)) :=
1
u

exp(−16 u2), with u(0) = 1. (1)

We first consider (1) using the methods of Cauchy, and identify steps
in which the construction of solution becomes tedious. We then recast the
problem as a polynomial system, as might be done when using Taylor series
based automatic differentiation, and apply the same methods. It will be
clear the computations necessary to generate the series solution are basic,
and that a simple majorization which depends only on initial conditions and
the constant coefficients of the polynomial system leads to an error bound.
Although not demonstrated here, the method applied is quite general. See
[6, 14, 16] for practical examples.

2. Cauchy solution: the classic setting

We begin with the precarious assumption that a locally analytic solution
u(t) to (1) exists, and repeatedly differentiate the equation, using the fact
that f(u) is analytic in u near the initial condition.

d2
t u(t) = duf(u)dtu

= −
e−32 u2 (

32 u2 + 1
)

u3

d3
t u(t) = d2

uf(u)[dtu]2 + duf(u)d2
t u

=
e−48 u2 (

2048 u4 + 96 u2 + 3
)

u5

d4
t u(t) = d3

uf(u)[dtu]3 + 3d2
uf(u)d2

t udtu + duf(u)d3
t u

= −
e−64 u2 (

196608 u6 + 11264 u4 + 576 u2 + 15
)

u7

and dn
t u(t) = pn(f(u), duf(u), d2

uf(u), . . . , dn−1
u f(u)), (2)

where pn(·) denotes a polynomial in n variables (here taken from the set of
derivatives of f with respect to u of order less than n, i.e. {dk−1

u f}, k =
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1, . . . , n, and having postive integer coefficients). By this process, all coeffi-
cients of the power series representation of u(t) may be built;

u(t) =
∞∑

k=0

1
k!

dk
t u(0) tk. (3)

Note that the form of the polynomial pn in expression (2) allows the coeffi-
cients of the power series to be recovered recursively, although the complex-
ity of calculation may (and usually does) grow exponentially.

By its very construction, this power series (3) yields a unique classical
solution to the IVODE if it can be shown to converge. Cauchy demonstrated
convergence by comparison with a related analytic IVODE, whose individual
coefficients majorize (absolutely bound) those of (3). We briefly illustrate
the argument. We begin with the assumption of the theorem that f(u) is
analytic in some interval of radius R ∈ R about u = 1. Then for any positive
r < R, there exists

C∞ := max
k
{|Ck|} < ∞, where Cn =

1
n!

dn
uf(1)rn,

which provides the bound

max
k

∣∣∣∣ 1k!
dk

uf(1)
∣∣∣∣ ≤ C∞r−k

on the Taylor coefficients of f(u) about u(0) = 1. Next we define g via the
geometric series

g(v) :=
∞∑

k=0

C∞r−k(v − 1)k = C∞
r

r − (v − 1)
when |v − 1| < r,

and the comparison IVODE

dtv(t) = g(v(t)) with v(0) = 1. (4)

The form of equation (4) is motivated by the observation that the polynomial
pn generated in this case is identical in form to that of (2), allowing a direct
comparison of coefficients of u(t) with those of v(t). Also, g(v) majorizes f(u)
near 1 and allows (4) an analytic solution v(t) near 0. When |v − 1| < r,

|dn
uf(1)| = n!

∣∣∣∣ 1
n!

dn
uf(1)

∣∣∣∣ ≤ n!C∞r−n = dn
vg(1)

for all n. Noting that the structure of the polynomial in (2) is identical in
(1) and (4), it follows that

|dn
t u(0)| = |pn(f(1), . . . , dn−1

u f(1))|
≤ pn(|f(1)|, . . . , |dn−1

u f(1)|)
≤ pn(g(1), . . . , dn−1

u g(1))

= dn
t v(0),
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demonstrating that u(t) is majorized by v(t) in a neighborhood of t = 0. It
follows immediately that

|u(t)| =

∣∣∣∣∣
∞∑

k=0

1
k!

dk
t u(0) tk

∣∣∣∣∣ ≤
∞∑

k=0

1
k!

dk
t v(0) |t|k ≤ v(|t|).

The existence of an analytic solution of (4) with radius of convergence |t| <
r

2C∞
, given by

v(t) = 1 + r − r
√

1− 2C∞t/r, (5)

confirms that u(t) must also be locally analytic about t = 0.
This argument relies on C∞, a constant which in practice is often difficult

to ascertain. In our example, with r = 1, we have

C∞ = max
k
{C0, C1, C2, C3, . . .}

= max
k

{
e−16, 33 e−16, 529 e−16, (16435/3) e−16, . . .

}
,

and it not immediately clear where the maximum might occur. An explict
computation of the Ck terms, plotted in figure (1), suggests that the max-
imum occurs near k = 29, and one can easily imagine how involved the
expression d

(29)
u f has become.
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Figure 1: Ck coefficient list

3. Cauchy solution: the polynomial setting

We now apply similar techniques to an equivalent polynomial system.
Recall the original problem;

dtu(t) =
1
u

exp(−16u2), with u(0) = 1.

Now consider the introduction of the auxiliary variables:

x(t) :=
1
u

exp(−16u2) and y(t) :=
1
u

as might be introduced using the methods of [8, 15, 9, 1] when solving via
automatic differentiation, or as suggested by examples treated in [13, 12, 16].
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We now generate the polynomial system

dtu = x u(0) = 1

dtx = (−32xu− xy) dtu = −32x2u− x2y x(0) = exp(−16)

dty = − 1
u2

dtu = −y2x y(0) = 1.

The first equation is our original ODE; the additional equations serve a
purely computational purpose.

As earlier, we assume the existence of an analytic solution u. We continue
by assuming a formal power series for x and y, which can be shown (along
with u) to be convergent via a majorant argument. Now,

u(t) =
∞∑

k=0

ukt
k, x(t) =

∞∑
k=0

xkt
k, and y(t) =

∞∑
k=0

ykt
k.

The constant on which the previous argument relies is C∞, which is dif-
ficult in general to construct. The constants related to the polynomial ar-
gument are easy to construct. In this new setting, consider the companion
problem

dtz = Czm z(0) = c. (6)

Then (6) has the analytic solution

z (t) =
(
Ct− Ctm + c1−m

)−(m−1)−1

.

If C = 33,m = 3 and c = 1, we claim that z(t) majorizes u(t), x(t) and y(t).
These parameters arise naturally when considering the majorization; C from
the largest row sum of the absolute value of coefficients in the system, m
from the largest degree of the polynomial system, and c from the largest
of the absolute value of the initial conditions and 1. See [18] for a more
detailed explanation. As a brief exercise, we demonstrate this by applying
an inductive argument to verify that the coefficients of the power series
representation of z(t) =

∑∞
k=0 zkt

k bound those of x(t). Clearly z0 ≥ |x0|,
since c ≥ | exp(−16)|, the initial condition. Obviously,

z1 = 33z3
0 ≥ | − 32x2

0u0 − x2
0y0| = |x1|.

Assuming zk > {|uk|, |xk|, |yk|} for k = 0, . . . , n, it follows that

zn+1 =
1

n + 1
· 33

n∑
k=0

(
k∑

i=0

zizk−i

)
zn−k

≥ 1
n + 1

·

∣∣∣∣∣−32
n∑

k=0

(
k∑

i=0

xixk−i

)
un−k −

n∑
k=0

(
k∑

i=0

xixk−i

)
yn−k

∣∣∣∣∣ (7)

= |xn+1|
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where a Cauchy product has been applied twice. An important (and obvi-
ous) observation used in (7) is that

xn+1 =
1

n + 1
·

[
−32

n∑
k=0

(
k∑

i=0

xixk−i

)
un−k −

n∑
k=0

(
k∑

i=0

xixk−i

)
yn−k

]
,

which can easily be implemented to construct the coefficient xn+1 using only
coefficients of order n or less. The software tools ATOMFT and Taylor are two
such packages that exploit this recursive feature [3, 9]. The polynomial used
to construct coefficients in the classic setting, pn, has now been replaced by
an algebraic expression whose complexity is only O(n3). (In fact, augmenting
the system allows reduction to O(n2) [17].) Since z(t) converges on some
open interval containing t = 0 and majorizes x(t) for |t| < 1, x(t) must also
converge on the intersection of these intervals. The demonstration is now
complete; an explicit verification that x(t) converges via a term-by-term
comparison with the convergent series representation of z(t). It is easy to
see that a similar argument may be used for u(t) and y(t).

In addition to a simple coefficient recursion and explicit majorization,
the polynomial comparison solution gives rise to an easily computable local
a priori error bound. To accomplish this, the comparison solution z(t) is
bounded by w(t), a function with a geometric series representation. We
begin with the recurrence relation for the coefficients of z,

zn+1 =
(1 + (m− 1)n)cm−1C

n + 1
zn z0 = c, for n ≥ 1. (8)

For m ≥ 2,

(1 + (m− 1)n)cm−1C

n + 1
≤ (m− 1)cm−1C := C∞. (9)

Combining (8) and (9) yields zn+1 ≤ C∞zn. If

wn+1 = C∞wn, with w0 = c, (10)

then the coefficients of w majorize those of z (and therefore u), and w(t)
majorizes z(t) (and u(t)). The recurrence relation (10) leads directly to the
geometric series,

w(t) =
c

1− C∞t
= c

∑
k=0

(C∞t)k, when |t| < 1
C∞

.

The function w may be interpreted as a solution to the IVODE

dtw(t) = C∞w, w(0) = c (11)

where C∞ bounds the coefficient growth of terms of z, playing much the
same role as C∞. Here, however, C∞ is trivial to compute from (9).
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Finally, a simple bound on the remainder term Rn, given by

Rn(t) :=

∣∣∣∣∣u(t)−
n∑

k=0

ukt
k

∣∣∣∣∣ ≤ c

∞∑
k=n+1

C∞|t|k

≤ c|C∞t|n+1 1
1− |C∞t|

, (12)

provides a concise and computable error bound. For (1),

Rn(t) ≤ |66t|n+1

1− |66t|
.

For a detailed discussion, and an example for which this bound is tight, see
[18]. See [11] for a detailed discussion of Interval Analysis, an alternative
approach.

4. Conclusion

We have demonstrated that recasting the original ODE as a polyno-
mial system has several surprising benefits. The techniques of Cauchy-
Kowalevski, when applied to a polynomial system, lead one naturally to
a method in which; i) coefficients are easily computed in a recursive manner,
i.e. un+1, xn+1, and yn+1 only depend on products and sums of {uk, xk, yk}k=1..n,
ii) the majorization is explicit, and iii) there is a clear a priori error bound.
The error bound depends only on immediately observable quantities of the
recast system; coefficient sums, initial conditions, and degree.
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