
Forced Differential Equations: Problems to

Impact Intuition

Abstract: How should our students think about external forcing in the

differential equation setting, and how can we help them gain intuition? To

address this question, we share a variety of problems and projects that explore

the dynamics of the undamped forced spring-mass system. We provide a

sequence of discovery-based exercises that foster physical and mathematical

intuition about polynomial forcing, as we build tools and techniques (including

Green’s function) to explore the amazing behavior of y′′(t) + y(t) = tan(t).

We encourage the insightful use of a Computer Algebra System, and provide

a paired supplemental Maple Worksheet[16].
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1 MOTIVATION AND GOALS

Many textbooks [1, 14, 15] choose the ordinary differential equation

(ODE)

y′′(t) + y(t) = tan(t) (1)

as a common example when introducing variation of parameters in the

second order ODE setting. This example is chosen because the solution
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is relatively easily determined by the method of variation of parameter,

but is not amenable to the method of undetermined coefficients.

This article is motivated by the solutions and interpretations of (1).

While the mathematical solution process is fairly straightforward, intu-

ition about the problem and its solution is lacking. The function tan(t)

is usually referred to as an external forcing function. Since this equation

is frequently used to model a simple mass-spring system (or a driven

oscillator, more generally), a natural question is: “Is this problem phys-

ical? Are the solutions just mathematical, or are they related to physical

reality as we model a mass-spring system?” But these questions lead us

to other, more basic ones: “Are these forcing terms intuitive?” and then

to: “Are any forcing terms intuitive? If so, what is the intuition? How

does forcing influence the solution?”

There are many online resources that can be used in the classroom

to explore differential equations, including [19, 12, 20, 13], that allow

a quick and accessible way to gain intuition. These experiments and

visualizations can provide confidence to students in their understanding

of the mathematical solutions, and allow them to explain observable

features using their mathematical knowledge. Harder to find, though,

are demonstrations and tools which explore the contribution of external

forcing, and that build intuition about the effects of external forces.

The ideas presented here should be viewed as part of the important

and challenging interpretation stage of the solution process. Through

a sequence of discovery-based projects for undergraduate students, pre-

sented via polynomial forcing functions of increasing degree, we provide

a scaffold to explore the questions above. In the process, the students

will build intuition and motivation about solving ODEs that lead to a

better understanding about the more advanced topic of Green’s func-

tion. We concentrate on the numerous questions (and some answers)
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suitable for students in class and for those considering undergraduate

ODE research projects. We chose to study the forced undamped spring-

mass system, where a physical interpretation of the solution is easily

accessible. Although well suited to the study of oscillators, the idea is

applicable to many other forced, physical situations.

2 ASSUMPTIONS

We will assume that the student already has viable techniques for ob-

taining the solution of the initial-value forced problem

y′′(t) + y(t) = f(t); y(0) = y0, y
′(0) = v0. (2)

We will use ICs to reference the initial conditions y(0) = y0 and y′(0) =

v0, yh to refer to homogenous solutions, and yp to refer to particular

solutions. We occasionally use yh(t;α, β) as needed to reference the

explicit dependence of yh on the ICs y(0) = α and y′(0) = β.

We encourage the use of a Computer Algebra System (CAS) such

as Maple or Mathematica, which makes the solution of (2) easy to

generate, manipulate, and visualize. A Maple worksheet [16] (and a

pdf of this worksheet) is provided as an online supplement to assist the

instructor and/or student as they navigate this article.

3 FORCED SPRING-MASS SYSTEM

The basic spring-mass system, as with many other physical systems,

is easily modeled by applying Newton’s Second Law. This law asserts

that the force applied to an object is directly proportional to the rate

of change of the momentum of the body. If the mass is constant in

the momentum expression (which is mass times velocity), then the one
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dimensional form of Newton’s Second Law takes the familiar form

d

dt
(mv) = ma = F =

∑
i

Fi (3)

where F represents the sum of external forces Fi, m the mass, and a the

acceleration.

influence

m

m

y +

Fof

Figure 1. System with zero forcing and with constant negative forcing.

We now quickly develop a model for a mass suspended vertically from

a spring, with gravity taken to be negative and pointing downward, but

with no frictional damping (see Figure 1). At equilibrium, the spring

force will balance the gravitational force, leaving us with a zero sum for

these forces; and we label the equilibrium position y = 0. If the mass is

displaced from equilibrium (by an initial condition, for example), then

the spring provides a restoring force. This force is written −ky when

modeled using Hooke’s Law, and is proportional to and in the opposite

direction of the displacement. The complete model is now

my′′(t) = −ky(t); y(0) = y0, y
′(0) = v0. (4)

Additional external forces, such as the constant negative forcing as in

Figure 1, would join the −ky term. Rearranging slightly, and scaling

(by non-dimensionalizing, or by setting
√
k/m = 1, or by prescribing m

and k to be 1 in their dimensional units), the system results in an initial
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value ODE with external force F (t):

y′′(t) + y(t) = F (t); y(0) = y0, y
′(0) = v0.

More modeling details and a discussion of oscillator dynamics (typi-

cally under periodic forcing and with a focus on frequency coupling) can

be found in many classical mechanics/dynamics texts including [18, 17].

In addition, [10] is an open source text which treats scaling.

4 PROBLEMS AND QUESTIONS FOR STUDENTS

We now present a sequence of problems to explore external forcing, be-

ginning with polynomial expressions. The approach requires that stu-

dents first understand the influence of ICs, which is developed in 4.1.

Constant forcing is introduced in 4.2 to demonstrate a connection be-

tween the particular solution (as might be generated via undetermined

coefficients) that we call the baseline solution, and a change of variables

that eliminates the external forcing. Exercises concerning increasing de-

gree polynomial external forces that may be used to approximate tan(t)

will lead to intuition about y′′+y = tan(t) in 4.6, where the external forc-

ing is unbounded in finite time. Along the way, students encounter the

concept of Green’s function. Immediately following questions, comments

and suggestions for the instructor may be contained within brackets ([

. . . ]).

4.1 (Un)Forced: y′′(t) + y(t) = 0, y(0) = y0, y
′(0) = v0

The goal of these exercises is to understand the influence of initial con-

ditions. Figure 2 shows yh for a total of nine distinct (y0, v0) pairs, and

may be useful when discussing ICs.
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y′(0) = −1 y′(0) = 0 y′(0) = 1

y(0) = 1

y(0) = 0

y(0) = −1

Figure 2. No external force: y′′ + y = 0 with y(0) ∈ {−1, 0, 1} and y′(0) ∈

{−1, 0, 1}
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4.1.1 Exercises for students:

• Predict the solution based on the observable physical behavior after

watching an in-class demonstration, simulation, or video online [e.g.

[19, 13], or even [6] for a smartphone project].

• Plot several solutions using a CAS for a variety of ICs. Have the

students note any observable trends. [See supplemental Maple

Worksheet[16].]

• Talk about what happens to yh as initial position y0 and/or the

initial velocity v0 are varied.

• Fill in some missing panels in Figure 2, or add a new column or

row. [Start with the trivial solution, and build from there.]

• Plot many solutions for a particular parameter range: say

{y0 = 0, v0 ∈ [−1, 1]} or {y0 ∈ [0, 1], v0 = 0}.

4.2 Constant Forcing: y′′(t) + y(t) = F0, y(0) = y0, y
′(0) = v0

How can students think about external forcing? Our favorite image is to

consider the external force as a gravitational force - such as might result

by adding a (possibly variable) weight to the system, or being able to

tune gravity, as suggested both by the modeling process and Figure 1.

We begin with constant forcing, where intuition is based on an ad-

ditional constant gravitational force. A basic change of variables, z =

y−F0, is used to recast the forced problem as an unforced one. Students’

understanding of ICs will help them make sense of the necessary shift in

ICs for the recast problem. We will call yp = F0 the baseline solution

for this problem. Note: It is usual in a PDE setting to homogenize the

IC and/or BCs first, and then deal with nonhomogeneous PDE – we are

doing just the opposite!
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4.2.1 Exercises for students:

• Does the equilibrium point move up or down under the external

force F (t) = 1? [Up in our vertical frame.]

• What is an intuitive way to think about the external force F (t) =

±1? [Adjusting gravity or taking/adding weight to the system.]

• Use the method of undetermined coefficients, variation of parame-

ters, or a CAS generate a solution.

[y(t) = (y0 − F0) cos(t) + (v0) sin(t)︸ ︷︷ ︸
yh(t;y0−F0,v0)

+ F0︸︷︷︸
yp

]

• What is the change of variable for z to transform y′′ + y = 1 into

a homogenous problem in z? [ Let z(t) = y(t) − 1. For linear

problems in general, let z(t) = y(t) − F0. F0 can shift the solution

up or down.]

• What is the impact that this constant external force has on the

initial conditions in the new z homogenous problem? [The ICs

become z(0) = y0 − F0 with z′(0) = v0.]

• Compare the non-homogeneous problem y′′ + y = F0, y(0) = y0,

y′(0) = v0 with the homogeneous problem z′′+ z = 0, z0 = y0−F0,

z′0 = v0 where z(t) = y(t) − F0. [The dynamics of z should look

just like the dynamics of y, but shifted to the new equilibrium F0,

with a corresponding change in amplitude of the cosine term. The

dynamics of z will be an oscillation about F0, which is just yp.]

• Have the students work through a specific example like y′′+y = −2,

y(0) = 1, y′(0) = 0. They should plot in order: yp, z, y = yp + yh

in order to see the effect of F0 = −2. [See supplemental Maple

Worksheet[16].]
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4.3 Linear Forcing: y′′ + y = F0 + F1t, y(0) = y0, y
′(0) = v0

What if the external forcing is linear? Again we use a baseline solution

to understand the forcing. What does z(t) need to be? Letting z(t) =

y(t)−yp transforms the original ODE to the homogeneous ODE z′′+z =

0, z(0) = y0 − F0, z
′(0) = v0 − F1. The initial conditions for z are the

original ICs for y offset by the values of the baseline yp and y′p at t = 0.

4.3.1 Exercises for students:

• Explain how a time dependent external force like F (t) = −1+ t can

be imagined. [Gravity pulling down more strongly for t < 1 and

becoming anti-gravity (pushing up) when t > 1. ]

• Use the method of undetermined coefficients, variation of parame-

ters, or a CAS generate a solution.

[y(t) = (y0 − F0) cos(t) + (v0 − F1) sin(t)︸ ︷︷ ︸
yh(t;y0−F0,v0−F1)

+F0 + F1t︸ ︷︷ ︸
yp

.]

• Find a baseline (a viable particular solution yp) curve for y′′ + y =

1 + t. Why is the baseline important? [With y0 = F0 and v0 = F1

the baseline solution is yp = F0 + F1t.]

• Find the change of coordinates that makes y′′ + y = 1 + t homoge-

neous, and interpret the new ICs? [Let z = y − (1 + t). Intuitively,

ICs capture a snapshot of the system at a specific time. Note the

shift of ICs in two panels of Figure 3.]

• Find the solution to the transformed homogeneous problem z′′+z =

0, and plot it with the baseline curve. [See supplemental Maple

Worksheet[16].]

• How are yh and y related? [See Figure 3.]

• What happens to the solution y(t) in the limit as t→∞? [ yp drags

y(t) to infinity, too.]
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Figure 3. Linear forcing with F (t) = 1 − 1
4
t and y0 = 0.2 and v0 = 0.5.

(a) Plot of yh, z, and y for linear forcing, (b) Plot of gh, gp, and y for linear

forcing using Green’s function.

4.4 Quadratic Forcing: y′′ + y = F0 + F1t + F2t
2, y(0) = y0,

y′(0) = v0

Does anything change with a quadratic external force? The particular

solution is more involved since F ′′(t) 6≡ 0, but the argument is similar.

Again, a change of variables suggested by the particular solution gives

the standard homogeneous ODE z′′ + z = 0, although the ICs become

slightly more complicated because they reflect the complexity of the

linear part of yp.

4.4.1 Exercises for students:

• Explain how this quadratic force might be imagined. [Another grav-

ity analogy.]

• Use the method of undetermined coefficients, variation of param-

eters, or a CAS generate a solution. [See supplemental Maple

Worksheet[16].]
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• What are the choices of y0 and v0 that give just a baseline solution?

[ y0 = F0 − 2F2, v0 = F1.]

• Find a change of variables to transform this forced problem into a

homogenous one. [Use yp = −2F2 + F0 + F1t+ F2t
2.]

• Describe the solution y in terms of the baseline and the homoge-

neous solution. [The shifted homogeneous solution yh sits on top of

the particular solution.]

• What happens to the solution y(t) in the limit as t→∞ ? [yp drags

y to infinity.]

• What if F (t) = F0 + F1t + F2t
2 + F3t

3? Can you describe the

solution? [The general solution is

C1 cos(t) + C2 sin(t)︸ ︷︷ ︸
yh

+ [(−2F2 + F0) + (−6F3 + F1)t + F2t
2 + F3t

3]︸ ︷︷ ︸
yp

,

with full solution

cos(t)(y0 − (−2F2 + F0)) + sin(t)(v0 − (−6F3 + F1)) + yp.

The graph is a cubic shift from the original solution.]

4.5 Reflection, and Green’s function!

Have you noticed that the form of the particular solution makes it in-

creasingly difficult to understand the behavior of the homogenous so-

lution? Is there a different way to identify a particular solution and

homogeneous solution? Recall for students what has been done, and ask

if they see a way to avoid the shift in the ICs. You might remind them

that they started with y′′ + y = F (t) and split this problem into two

problems:

y′′h + yh = 0, with y(0) = y0 − yp(0), y′(0) = v0 − y′p(0) and (5)

y′′p + yp = F (t) with no prescribed ICs. (6)
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We’re hopeful that students might come up with this new way to split

the problem (maybe after a little coaxing):

g′′h + gh = 0, with gh(0) = y0, g
′
h(0) = v0 and (7)

g′′p + gp = F (t), with gp(0) = 0, g′p(0) = 0, (8)

which is essentially a Green’s function approach! Green’s functions are

the classic tool to study the influence of forcing on boundary and initial

condition linear problems, but are normally reserved as a topic in ad-

vanced differential equations courses. Here the idea of Green’s function

arises quite naturally. We will use g, gh and gp to denote these solutions.

4.5.1 Exercise for students:

• Analyze the initial value ODES considered in sections 4.2-4.4 using

the analysis suggested by (7) and (8). Which method provides more

intuition? [See Figure 3. We prefer the first method in this case,

although we will see that both are valuable.]

4.6 Infinite Force: y′′ + y = tan(t), y(0) = y0, y
′(0) = v0

Figure 4 contains a plot of the baseline solution (y(0) = 0 and y′(0) =

−1) in bold, along with solution curves for a sequence of initial positions

with fixed velocity y′(0) = −1. Surprisingly, the system acts in some

ways as if it were damped! We think this is a very interesting problem,

and hope students do, too!

4.6.1 Exercises for students:

• Describe a model where this type of forcing might be relevant. [A

near field magnetic force with an inverse square singularity.]

• What happens to the forcing at t→ π/2, and how do you think this

will influence the solution? [Forcing becomes infinite, and it seems
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Figure 4. Amplitude and velocity for the solution of y′′ + y = tan(t) with

y(0) ∈ {−3, 3} and y′(0) = −1. The legend indicates values of y(0), and

baseline curve is in bold for y(0) = 0.

like the solution should, too. But it doesn’t!]

• Construct and plot y(t) (the amplitude) and y′(t) (the velocity) for

a variety of ICs.

[y(t) = y0 cos (t) + sin (t) (v0 + 1)︸ ︷︷ ︸
yh(t;y0,v0+1)

+

(
− cos (t) ln

(∣∣∣∣1 + sin (t)

cos (t)

∣∣∣∣))︸ ︷︷ ︸
yp

with baseline yp.]

• Where is this solution valid? Can it be extended? [Defined on

the interval (−π/2, π/2), but can be “filled” to be continuously

extended. The derivative is discontinuous, however.]

• Do these solutions match original intuition, particularly at t = π/2?

[For arbitrary velocity v0, y(π/2) = v0 + 1. Interactive plots or a

sequence of plots might work well here.]

• Identify and use the homogenous and particular solutions to explain

the fact that y(π/2) = v0 + 1 for arbitrary ICs. [ yh(π/2) = v0 + 1

and yp(π/2) = 0, so it is only yh (and the ICs) that determine the
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solution at t = π/2.]

• Explain why y′(π/2) → ∞ for any choice of ICs. [y′h(π/2) =

−y0, y′p(π/2)→∞ and so yp drives the solution to infinity!]

• Can y′′ + y = M(t) where M(t) is the Maclaurin polynomial ap-

proximation for tan(t) be used to understand y′′ + y = tan(t)? Is

there anything to learn from the sequence of particular solutions?

Do the ideas of Green’s function help? [See supplemental Maple

Worksheet[16].]

• Identify and explore additional questions that the students have

about this solution. [For example: Does this solution represent a

possible physical scenario? Why is the particular solution bounded?

Can a series representation be used to approximate the forcing?

How does this undamped system manage to have features of a

damped system?]

4.7 Other ideas

Here are some additional questions students might enjoy:

• Consider y′′ + y = F0 + F1t + F2t
2 + ... + Fnt

n in terms of what

they now know. Why is it that the even terms affect only the cos(t)

term and the odd terms affect only the sin(t) term?

• Consider the initial value ODE y′′+y = tan(t+ε); y(0) = y0, y
′(0) =

v0. Analyze similarly and compare the results with the tan(t). What

happens in your solution as ε→ 0?

• When solving y′′ + y = tan(t) by hand with variation of parame-

ters, the solution should involve absolute values. Most CAS systems

generate the solution without absolute values. What is the differ-

ence in these two solutions? Since tan(t) is an odd function, does

the CAS solution make sense? Are both solutions continuous? Are
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both solutions differentiable? What is the domain of each solution?

Does the extension of the CAS solution oscillate?

• y′′ + y = sec(t). Can students make sense of this model physically?

Can they make sense of it mathematically? Encourage them to gen-

erate some solutions using variation of parameters for (8). [Another

infinite force in finite time.]

• y′′+y = cos(ωt). (Beats and resonance!) Can students make sense of

this model physically? Can they make sense of it mathematically?

Ask students to generate and compare intuition from both the näive

analysis allowed by (5) and (6) to the analysis based on (7) and (8)?

What happens as ω → 1? What happens as ω → 2? [A classic! Try

the interactive plot on the supplemental Maple Worksheet[16].]

• Convolution and Green’s Function: If we seek a particular solu-

tion to y′′(t) + y(t) = f(t); y(0) = 0, y′(0) = 0 via variation of

parameters, we see

yp(t) = − cos t

∫ t

0

f(τ) sin τ dτ + sin t

∫ t

0

f(τ) cos τ dτ,

which (after combining the two integrals and using a double angle

formula) can be written in Green’s functional form

yp(t) =

∫ t

0

f(τ) sin(t− τ) dτ, (9)

which is a convolution of Green’s function (here it is sin(t)) with

the forcing f(t). Notice that the variation of parameters method

produces a solution to (6). This functional form has many nice

properties, and could be the start of many beautiful projects on

Green’s function and provide intuition about the convolution oper-

ator.

• Consider the initial value ODE, y′′+y =
1

(1− t)r
; y(0) = y0, y

′(0) =

v0 using the variation of parameters formula or Green’s integral (9)
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for values of r with 1 ≤ r ≤ 2. For what values of r does the solution

exist as t→ 1, and why?

5 CONCLUSIONS

We have demonstrated that even for a simple second order ODE, exter-

nal forcing functions can be quite complicated to understand and can

lead to interesting questions and phenomenon. The mathematics can

question the physics and vice versa. Both students and instructors will

be surprised by what they learn. We were (and are) still amazed that a

solution is able to maintain a bounded position even as forcing becomes

unbounded, as evidenced in the tan(t) forcing case!

Looking for the baseline solution in an externally forced ODE can

help develop insight and intuition. Considering the particular solution

derived using the method of undetermined coefficients as a baseline for

the dynamics leads to a mathematically intuitive idea, and is one that

works remarkably well in practice. An alternate choice of a particular

solution for the baseline is one that is related to Green’s function, and

corresponds to solving the ODE with non-homogeneous forcing, but with

homogeneous initial conditions. In both cases, splitting of the problem

into two parts allows for a fairly detailed analysis of the solution, and

provides intuition into the ingredients of the problem at hand. The use

of Computer Algebra Systems is encouraged, and viewed as a tool of

discovery and insight rather than just as a calculator. We hope that

the discovery-based process detailed in this article and supplemental

Maple Worksheet[16] will allow instructors of differential equations to

foster intuition and confidence in their students.
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