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Abstract

The Malkus chaotic waterwheel, a tool to mechanically demonstrate Lorenzian dynamics, moti-

vates the study of a chaotic sandwheel. We model the sandwheel in parallel with the waterwheel

when possible, noting where methods may be extended and where no further analysis seems fea-

sible. Numerical simulations are used to compare and contrast the behavior of the sandwheel

with the waterwheel. Simulations confirm that the sandwheel retains many of the elements of

chaotic Lorenzian dynamics. However, bifurcation diagrams show dramatic differences in where

the order-chaos-order transitions occur.
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I. INTRODUCTION

The Lorenz equations are a well-known and well-studied system of equations that exhibit

chaos. Originally posed to capture features of atmospheric convection,1 the system has also

been shown to model a variety of physical applications including lasers and dynamos.2,3

In 1972, Willem Malkus developed the chaotic waterwheel, a mechanical system for which

the Lorenz equations serve as a mathematical model.4 The chaotic waterwheel has been

popularized by Strogatz;5 it consists of a disk with punctured cups equally spaced around

its circumference and driven by a single source of water. Two control parameters, the water

inflow rate and the rotational friction, allow the system to exhibit a wide range of behaviors.

Numerous authors have built upon the work of Malkus.6–12

The Malkus waterwheel was carefully designed to simulate the Lorenz equations, and so

there is no a priori expectation that a change in media will lead to similar (or dissimilar)

dynamics. This article will focus on the novel change of the media in the wheel from water

to sand. Mathematically, the use of sand (or any other granular material) leads to a slight

modification of the original model. Consider two containers, one filled with water and the

other with sand. The pressure head with water obeys a linear scaling, but is largely constant

for sand. Thus, the rate equation for water mass is given by dm/dt = −Kwm, where m is

the mass in an individual cup and Kw is the outflow rate of the water. In contrast, the rate

equation for the sand mass from a non-empty container is modeled by dm/dt = −Ks, where

Ks is the leakage rate of the sand. Note that the units of Ks (kg · s−1) differ from those of

Kw (s−1).

This slight modification brings about signifiant differences in both the analytical deriva-

tion and the numerical results. Unlike the waterwheel, where mathematical equations mo-

tivated the physical experiment, in this case a physical sandwheel experiment was used to

motivate the mathematical analysis. In the Summer of 2009, a group of students built a

chaotic sandwheel—the first that we are aware of—in the first weeks of a summer research ex-

perience. Figure 1 provides a schematic of the sandwheel. The project succeeded in piquing

the interest of the students involved, who quickly paralleled the mathematical analysis of the

waterwheel for the sandwheel. The experimental aspects of constructing the sandwheel and

making accurate measurements proved to be quite a challenge, and the difficulties quickly

convinced our students to focus on the mathematical analysis. Therefore, the functioning
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sandwheel served more as a motivation for the mathematics than as a viable experimental

playground, and a true experimental-grade sandwheel remains an intriguing open problem.

Valve

FIG. 1: A schematic of the experimental sandwheel.

Nevertheless, the construction of the sandwheel and the measurements we made provided

the insights necessary for what follows in this article, beginning with the basic notion of

leakage rate and its consequences. Intuitively, the constant rate of sand loss would appear

to make the analysis of the problem easier. In fact, the problem becomes much harder to

analyze. No longer is the leakage rate (per cup) proportional to the mass, but is instead

nonlinear; it is a constant that switches to zero when the cup is empty. Unfortunately, this

means that the continuous mathematical analysis typically applied to the waterwheel cannot

be applied to the sandwheel.

We develop the analysis of the sandwheel in parallel with that of the waterwheel when

possible, noting where methods may be extended and where no further analysis seems fea-

sible. Numerical simulations are then used to explore the behavior of the sandwheel. We

compare and contrast the behavior of the sandwheel with the waterwheel, classifying the

behavior using center of mass dynamics. Numerical simulations verify that the sandwheel

retains many of the elements needed for chaotic Lorenzian dynamics. However, bifurcation
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diagrams show dramatic differences in where the order-chaos-order transitions occur.

II. MATHEMATICAL MODELING

To begin to understand the differences that arise between the waterwheel and sandwheel,

we follow the analysis of Matson10 and consider tracking the individual cups to describe

the motion. Notationally, we will use subscripts of w and s to distinguish variables in the

waterwheel and the sandwheel, respectively. We assume that cups on the waterwheel leak at

a rate Kw, proportional to the mass contained in each of the N cups, and that the frictional

force is proportional to the rotational speed of the wheel. We will also assume that cups do

not overflow. With these assumptions, the system of differential equations describing the

waterwheel is
dmi

dt
= Q(θi)−Kwmi, (1)

where mi is the mass of the ith cup (i = 1 . . .N), and

Q(θi) =











Q, if cos(θi) ≥ cos (π/N)

0, otherwise
(2)

is the inflow rate per cup i as a function of the cup’s angular position θi. The solution for

each cup i is then

mi(t) =
Q(θi)

Kw

+ e−Kwt

(

mi(0)−
Q(θi)

Kw

)

, (3)

so long as the inflow Q(θi) is constant. Notice that the long term mass in a cup will approach

a constant, even if Q(θi) does not change to zero.

Using the same assumptions for the sandwheel, with the exception that sand demonstrates

a constant leakage rate Ks, we find a system of differential equations given by

dmi

dt
= Q(θi)−H(mi)Ks, (4)

where the Heaviside (or unit step) function obeys

H(x) =











0, if x < 0

1, if x > 0
(5)

and is required to conserve mass. The solution to Eq. (4) between changes of Q(θi) and

H(mi) is given by

mi(t) = m(0) + [Q(θi)−KsH(mi)] t. (6)
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The difference between the mass leakage factors in Eqs. (1) and (4)—m versus H(m)—is

at the heart of what makes the two wheels different. If Q < Ks then the system drains

completely to zero sand mass. On the other hand, if Q > NKs then the mass always

becomes unbounded. For Q in between these limits, it is not obvious how the average

outflow Ks

∑

H(mi) compares with the inflow Q. Thus, when Ks < Q < NKs, an analog

to steady-state waterwheel mass can occur, with sandwheel mass varying (repeatedly or

randomly) about a finite average.

The discrete torque balance equation, which states that the time rate of change of the

system’s angular momentum must balance the frictional and gravitational torque, is given

by

Iω̇ = −νω + gr

N
∑

i=1

mi sin(θi), (7)

where r is the radius of the wheel and g is acceleration due to gravity. Angular momentum

is Iω, where the inertial term I is a combination of the inertia of both the wheel (Io) and

the media. The moment of inertia I, modeled by I0 + r2
∑

N

i=1mi, will be denoted Iw in

the waterwheel setting, and by Is in the sandwheel setting. Since the total water mass

approaches a steady state, Iw will be considered a constant, while in general Is is not. The

drag parameter ν, as it is in Strogatz,5 includes the effect of wheel shaft friction (or a brake)

and the slowdown effect due to bringing the input water (or sand) up to the speed of the

bucket into which it falls. Recently, Illing et. al. experimentally verified that damping can

be modeled as a torque linear in velocity.12 The addition of the equation θ̇1 = ω closes this

system in N + 2 equations.

A Fourier analysis of the waterwheel, as presented by Strogatz,5 introduces a series rep-

resentation for m(θ) and Q(θ). Remarkably, only the equation for the first mode needs to be

considered—the zeroth mass mode approaches a steady state and all higher modes decay to

zero. However, it is at this point where classic Fourier analysis fails for the sandwheel; it is

no longer clear if the zeroth mass mode approaches a constant, nor is H(mi) easily amenable

to analysis and subsequent dimension reduction. This discussion hints at the nonintuitive

nature of the sandwheel and raises the question of whether chaos is present in the sandwheel

as it is in the waterwheel.

A derivation based on the analysis of the center of mass is appealing; Matson10 reduces

the N mass dimensions of Eq. (1) down to two coordinates that provide a clear and concise
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way to observe system dynamics. Following suit, we introduce center of mass coordinates

ycm =
r

M

N
∑

i=1

mi sin(θi) (8)

and

zcm =
r

M

N
∑

i=1

mi cos(θi), (9)

where M is the total mass in the system. For water we have Mw = Q/Kw at steady state,

and for sand it is possibly an unbounded function in time.

For the waterwheel, differentiation of ycm and zcm with respect to t, and substitution of

ṁi from Eq. (1) yields

ẏcm = ωzcm −Kwycm (10)

and

żcm =
rq0
Mw

− ωycm −Kwzcm, (11)

where the
∑

Q(θi) sin(θi) term has been dropped because it is small and approaches zero

for large N , and q0, defined as
∑

Q(θi) cos(θi), is approximately equal to Q, its value for

large N .

The torque balance equation for the waterwheel turns out to be only a slight modification

of Eq. (7), and is given by

Iwω̇ = −νω + gMwycm. (12)

It is worth repeating just how remarkable it is that the motion of the system, originally

described by N + 2 equations, can be accurately described by the three variables ycm, zcm,

and ω.

For the sandwheel, the center of mass motion cannot be as cleanly stated as in Eqs. (10)

and (11). We have instead

ẏcm = −
Ṁs

Ms

ycm −Ks

r

Ms

N
∑

i=1

H(mi) sin(θi) + ωzcm, (13)

żcm = −
Ṁs

Ms

zcm −Ks

r

Ms

N
∑

i=1

H(mi) cos(θi)− ωycm +
rq0
Ms

, (14)

and

Ṁs =
N
∑

i=1

ṁi = Q−Ksγ(t), (15)
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where γ(t) =
∑

N

i=1H(mi). As discussed in the next Section, our results suggest that γ, a

stepwise constant function denoting the number of cups containing sand, is an important

function in the dynamics. Although deterministic, γ introduces an interesting noise-like

influence.

The torque balance equation for the sandwheel is straightforward to rewrite in terms of

center of mass coordinates. Unlike with the waterwheel, however, it requires knowledge of

the dynamics of Ms and Is (and therefore mi for all cups). The analog to Eq. (12) is simply

Isω̇ = −νω + gMsycm. (16)

Unfortunately the system that uses center of mass coordinates for the sandwheel cannot

be closed as was possible for the waterwheel, because it depends upon complete knowledge

of mi for each cup. We instead are forced to consider the full mass-tracking system of N +2

equations. Such an analysis is carried out numerically.

III. NUMERICAL RESULTS

The behavior of these complicated discrete systems is explored through a series of numer-

ical experiments. Using an adaptive Runge-Kutta scheme, we compute solutions {mi, θ, ω}

(measured in kg, rad, rad · s−1, respectively) of the waterwheel (Eqs. [1,7]) and sandwheel

(Eqs. [4,7]) systems. We also compute ycm and zcm, both measured in m. We consider simu-

lations of N = 8 cups at radius r = 0.2m, with damping parameter ν = 1 kg ·m2 ·s−1, gravi-

tational acceleration g = 9.8m·s−2, inflow Q = 0.2 kg ·s−1, and outflow either Kw = 0.09 s−1

or Ks = 0.09 kg · s−1 in mks units. The initial rotational inertia I0 is a very flexible parame-

ter in the simulation, since it reflects the design of our hypothetical experimental apparatus.

Here we choose it to be a physically reasonable value of 1 kg · m2 and consider Q and K

values which focus analysis on the media driven dynamics rather than on momentum of the

wheel. We remove transients by discarding the first 2,000 seconds of the simulation. Units

will often be suppressed in the rest of the paper for simplicity.

Recall that, for a suitable choice of parameters, the classic Lorenz butterfly structure

can be seen for the waterwheel when one views a 3-d parametric plot of the two Fourier

coefficients and the velocity, or if one plots the two center of mass coordinates and the velocity

(e.g. Strogatz or Matson).5,10 Following Matson, the top panel of Fig. 2 is a projection of the
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FIG. 2: (color online). The top panel is a center of mass trajectory for the sandwheel attractor

according to Eq. (4) and Eq. (7). The bottom panel is a trajectory of the product of total mass

and center of mass. Both take Qs = 0.2 for time from 2000 to 2400 seconds.
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time series of zcm vs. ycm from the sandwheel solution with Q = 0.2 kg · s−1. A connection

with the classic Lorenz-type butterfly figure is not immediately apparent. What is striking,

however, is the segmentation of the trajectory into spatial regions largely delineated by

the magnitude of γ, the number of non-empty cups. This suggests that γ is an important

measure of the system in the case of small Qs, since the dynamics of the sandwheel are

visually correlated with the variability of γ. We mentioned that the waterwheel reaches

a fixed mass Mw = Q/Kw after some transient phase, which is not the case with the

sandwheel. If we take the system to a constant γ, we can claim waterwheel dynamics for

that parameter regime of the sandwheel. In the lower panel of Fig. 2, a modified center of

mass plot is presented for the same parameter values as the panel above, where the center of

mass quantities have been multiplied by the current total mass in system. Now the Lorenz

butterfly is obvious, as is the segmentation. The difficulty in observing the butterfly in

the top panel suggests that the steady state mass assumption is an important but subtle

feature in plots like those of Strogatz and Matson. In the rest of this paper, we will use

modified center of mass plots to describe the sandwheel, like the bottom panel of Fig. 2.

These modified coordinates, which are related to the Fourier coefficients and which take

into account the possibly variable total mass in the system, allows us to better compare and

contrast the behavior of the waterwheel and sandwheel.

There is an intuitive understanding of the trajectory we are looking at in both panels of

Fig. 2, which is perhaps easier to see in the top panel. When the majority of the system’s

mass is contained in one cup, that cup quickly reaches the bottom of the wheel and rotation

ω slows. At this point the center of mass is near the bottom of the wheel. As the filled cup

empties, the cup opposite to the bottom cup fills at the top of the rim. This causes the center

of mass to rise through the center of the wheel. It is at this point when the direction of the

next turn depends more on slight perturbations. Local Lyapunov exponents are higher in

this region.11 As the upper cup overtakes the lower one, the wheel spins one way or another

and ω increases again. For this particular set of parameters, only one or two cups have

any sand in them at this point. But as the wheel spins more cups get sand, as shown in

the increase of the sum of all the Heaviside functions, γ. Once again the dominating cup

reaches the bottom, and the process is repeated. Figure 2 portrays the dynamics of the

modified center of mass of the sandwheel in a way that can be easily recognized by those

familiar with Lorenzian systems, although the trajectories are interestingly partitioned by
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the number of active cups. However, it is not the dynamics of a given set of parameters

where the differences are most noticeable, but when we study the transitions of well-known

bifurcation parameters.

The top panel of Fig. 3 presents the bifurcation diagram of the waterwheel when Qw is

used as the bifurcation parameter. The study of Kolmogorov Entropy shows how the mere

calculation of the exponent of the distance in diverging trajectories is a good approximation

to the maximum Lyapunov exponent (this is, provided we do it in time intervals with a

corresponding trajectory that is small relative to the radius of its curvature).13,14 Thus,

the panel below the bifurcation diagram shows this estimate for the maximum Lyapunov

exponent (denoted λmax), allowing us to recognize the transition to chaos and back to

periodicity, as it was discussed in Becerra-Alonso.11 The periodicity of low Q is different

from that in high Q. For small values of Q, the waterwheel always rolls in the same direction

(a permanent orbit in one of the two sides of the corresponding Lorenzian attractor). On

the other hand, large values of Q (in Fig. 3) make the waterwheel turn back and forth like

a pendulum (the fixed orbit now goes to both sides of the attractor). In between these two

there is chaos, where positive Lyapunov exponents are found within this interval.

Figure 4 contains plots of post-transient trajectories of the center of mass at six values

of Qw as labeled in the first column by (a) through (f), ranging in value from 0.0265 to

1.3 (kg · s−1). Just to the right of each trajectory is a grayscale plot indicating relative mass

of each of the cups through time in seconds. The cup with the most water at a given time is

represented in black, while empty cups are white. All cups with mass in between these two

are plotted in gray. The specific values of Q are [0.0265 (a), 0.0445 (b), 0.0460 (c), 0.0596 (d),

0.3798 (e), 1.3 (f)] in kg ·s−1, and the motivation for these particular values of Q will become

clear later. The top row of panels corresponds to four Q values from the clearly periodic

regime of the bifurcation diagram (Q < 0.1), the middle row of panels to the chaotic region

(Q roughly between 0.1 and 1.2) and the last to the quasiperiodic phase (Q > 1.2). Notice

that the sequence of trajectories in the top panel of Fig. 4 and corresponding to Q values

(a) through (d) appear to move towards the origin monotonically for a very small increase in

Q, although a computation shows an increase in rotational inertia. When Q becomes larger

than about 1.2, the system enters a stable nearly periodic pendulum-like motion. It first

rotates in one direction, then the other, but never overturning and therefore never unstable.

This compliments well the evidence of the bifurcation diagram and spectrum, and lends
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FIG. 3: Bifurcation diagram (top) and Lyapunov spectrum (bottom) of the waterwheel according

to Eq. (1) and Eq. (7).

intuition about the physical reasons for these changes of state.

However, we find a completely different set of transitions in the sandwheel. Chaos and

periodicity in the sandwheel follow a quite unexpected pattern and an array of dynamics

not known in the waterwheel. In order to explain each one of these dynamics, we present

a bifurcation diagram and approximate Lyapunov spectrum in Fig. 5. Figure 6 contains a

series of panels detailing specific trajectories of the modified center of mass, and individual

relative mass for each. The specific values of Q are [0.17 (a), 0.24 (b), 0.3 (c), 0.4 (d), 0.6

(e), 0.8 (f)] in kg · s−1, as given in the first column. As before, the cup with the most sand

at a given time is plotted in black, while empty cups are in white. All cups with mass in

between these two are plotted in gray.

A closer look at different regions in the Fig. 5 gives us an array of the different dynamics.

For Q = 0.17 (a) we find a particular case where the system tends to converge to a periodic

rolling, either clockwise or counterclockwise. For values of Q near this periodic regime

(particularly Q = 0.24 (b)), we find chaos that appears closest to the Lorenzian form as
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Q value (kg · s−1) Center of Mass (m vs. m) Relative Mass
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FIG. 4: Waterwheel sample trajectories of center of mass (middle column) and grayscale of relative

mass in active cups (last column) for specific Q values (first column).

it is presented most typically (with the Prandtl number close to σ = 10 and the Rayleigh

number close to R = 28). Figure 1 is an example of parameters in this region. For higher

values of incoming sand (Q = 0.3 (c)) the system oscillates quasiperiodically between two

values. For Q = 0.4 (d) the noise is gone and all that remains is periodicity. The grayscale

plot confirms that this is the case. From this point (e) the system enters a regime beginning

near Q > NKs ≈ 0.72. Just as it happened in (c) the Heaviside effect is abundant here,

and noise takes over. Heaviside seems to act in waves of resonance with respect to Q. Noise

in the grayscale plot in (e) disguises what the modified center of mass plot shows: overall

Lorenzian topology is preserved. But this grayscale plot is far from comparable with that

of (b), the first parameter region in which chaos is observed. Finally, Q = 0.8 (f), the

return to periodicity, is actually the result of what happens when Q > NKs. The system

saturates, and sand grows without bound. Periodic behavior is the only way the sandwheel
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FIG. 5: Bifurcation diagram (top) and Lyapunov spectrum (bottom) of the sandwheel according

to Eq. (4) and Eq. (7).

can deal with the system from this point. Even if at this point we forced an upper limit

to the amount of sand the system can manage, the dynamics would still remain the same:

rolling back and forth in a stable orbit. The grayscale plot shows very well this extreme,

while the modified center of mass plot shows the saturation after a transient. The modified

center of mass orbit is slowly converging towards a periodic orbit where the mass of each

cup is growing unbounded.

The grayscale plots to the right of Fig. 6 allude to another interesting aspect of the

sandwheel. Recall that γ is the number of non-empty cups in the sandwheel and increases

from {1, 2} cups in (a) to approximately 5 cups in (b) and (c). The range of γ is within {6, 7}

cups in (e). The progressive increase of the number of active cups in the sandwheel makes

the dynamics resemble those of the waterwheel, since all cups are active in the waterwheel

setting.

A direct comparison of bifurcation parameters, Qs and Qw, in the two bifurcation dia-

grams is difficult. The direct relationship between Qw and Mw, however, can be used to get
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FIG. 6: Sandwheel sample trajectories of modified center of mass (middle column) and grayscale

of relative mass in active cups (last column) for specific Q values (first column).14



a relative picture. By first fixing Qs, then computing a time averaged total mass of the sand-

wheel, as sampled uniformly over t ∈ [2000, 2200] seconds and denoted by M̄s, an equivalent

Qw can be recovered from M̄s = Qw/Kw for comparison in the waterwheel setting. It is for

this reason that the values of Qw were selected in Fig. 4, as an attempt to compare the

behavior of the two system using total (average) mass as bifurcation parameter, rather than

the more typical Q. The largest value of Qs = 0.8 has no direct analog in the waterwheel

setting because the mass in this case does not reach a steady state. Using this method, it

appears that Qs ∈ [0.1, 0.5] maps to the periodic regime of the waterwheel, (Qw ∈ [0, 0.1]).

This suggests that the transition on regions (a) through (d) in Fig. 5 is driven by γ, and that

at times γ provides a large enough perturbation to drive the trajectory away from a single

lobe of the attractor, when the modified center of mass is sufficiently close to origin of the

center of mass (in Fig. 5 regions (a)-(b) and Fig. 6(a-b)). This chaotic perturbation knocks

the system into a chaotic trajectory, attracted to both lobes of the Lorenzian attractor. At

other times it appears that γ is not quite large enough to disrupt the Lorenzian dynamics

sufficiently to force the attractor out of the attraction region, but is still large enough to

result in quasiperiodicity in (c) (and in Fig. 6c). Even in the perturbed periodic region of

(d), γ still occasionally (but rarely) is able to push the system away from the attracting

manifold, but not to the competing lobe of the attractor.

IV. SUMMARY

The numerical approach shows that the discontinuity introduced by the Heaviside func-

tion does not completely distort the essential dynamics found in the waterwheel. Still, it

severely affects the routes to chaos common to the waterwheel, and the parameter spaces

where these transitions occur. Although the introduction of the Heaviside function makes

analysis much more complicated, neither the topology of the center of mass, nor the dy-

namics are in the most fundamental sense severely affected. The sandwheel looks like a

waterwheel when rotating. No sharp turns or unexpected movements are found beyond

those of the chaotic waterwheel. It is simply complemented by permanent perturbations

induced by γ that only slightly reshape the center of mass attractor.

The detailed dynamics of the sandwheel have shown a much richer array of behaviors than

seen in the waterwheel. We find the two forms of periodicity and chaos, just as they are
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found in the waterwheel. But the sandwheel also presents quasi-periodicity and a border of

chaos unique in that it is associated with the region where incoming sand dominates leaking

sand. This threshold was predicted in the analysis prior to simulation. Then, numerical

results showed the transition to be not as sharp. Instead the return to periodicity in the

sandwheel (as we increase Q) happens more as a struggle of overloaded cups against almost

empty ones. Periodicity finally takes over when the same cups finally retain a positive

balance of sand after every turn of the wheel.

The parameter regimes for different dynamics are redefined when compared to those of

the waterwheel. There is periodicity in the midst of two large intervals of chaotic regimes.

The chaotic sandwheel extends the dynamics of Malkus’ waterwheel with the addition of

γ, a discrete feature. It appears, from a comparison based on total mass of the system,

that γ has a large influence on dynamics for low total mass of the system, and triggers

chaotic dynamics in regions that would be periodic in a sandwheel continuous setting, but

has progressively less impact as total mass grows. What makes the sandwheel appealing

is that the magnitude of this effect is self-regulating. While the Lorenzian dynamics that

lie at the heart of the waterwheel analysis still appear in the sandwheel, the dynamics are

sufficiently different and require a more in-depth theoretical analysis.
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