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ABSTRACT OF DISSERTATION

ADJOINT APPROACH TO PARAMETER IDENTIFICATION WITH

APPLICATION TO THE RICHARDS EQUATION

The inverse problem for the unknown coefficient ingredient of a class of

quasilinear parabolic partial differential equations is considered. An ap-

proach based on utilizing adjoint versions of the direct problems to de-

rive integral equations explicitly relating changes in inputs (coefficients) to

changes in outputs (measured data) is presented. Using the integral equa-

tions it is possible to demonstrate properties of these maps. In the first

problem, we show that the coefficient to data mappings are continuous,

strictly monotone and injective. In the second, the mapping is shown to

be explicitly invertible. The equations are further exploited to construct

an approximate solution to the inverse problem. In the first problem, these

equations are also used to analyze the error in the approximation. These

equations are then used to construct a numerical recovery algorithm, which

we call the integral identity method. Finally, numerical experiments are

presented which explore the recovery process.

Roger Thelwell
Department of Mathematics
Colorado State University
Fort Collins, Colorado 80523
Summer 2004
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Chapter 1

A BRIEF HISTORY

1.1 Darcy, Darcy’s Law and the Richards equation

In 1835, M. Henri Darcy was commissioned to enlarge and modernize

the town water works of Dijon, France. Suitable filters were required for the

expanding system. Unfortunately, the information necessary to determine

the size of these filters was unavailable. Darcy designed an experiment that

could provide the needed information.

A large column was filled with

sand, with a water supply at the top,

and a discharge at the bottom into

a measuring tank. Valves controlled

both the input and output rate, while

manometers measured pressure. Ex-

periments were conducted over a range

of constant flow rates and the pressure

was recorded at each rate. This data

made apparent that the flow rate of

water (q) through a sand filled verti-

cal column is closely approximated by the relation

q = −κ(h1 − h0)

z1 − z0

1



where q is the volume of water per unit area, h1 and h0 are the heights above

a reference water level, z1 − z0 the depth of the sand, and κ a constant

of proportionality. This constitutive relationship quickly became known

as Darcy’s Law, and has been extended to cover more general settings,

including various soils and three dimensional non-vertical flow. In general

differential form Darcy’s law is

q = −κ∂z(h− z sin(ϑ)),

taking h0 = 0. Here h denotes pressure head and z sin(ϑ) gravity head, with

ϑ the angle from vertical in the usual coordinate reference.

The conservation of mass statement for water content Θ(h) is given by

∂tΘ + ∂zq = 0.

Applying Darcy’s law, yields

∂t(Θ(h)) − ∂z(κ(∂zh− sin(ϑ))) = 0.

Making the simplifying assumptions that the soil is homogeneous, unsatu-

rated, and neglecting hysteresis, κ and Θ can be considered single valued

functions of h. One can then write

C(h)∂th = ∂z(K(h)(∂zh− sin(ϑ))), (1.1)

where C(h) = dΘ/dh represents soil capacity and K(h) hydraulic conduc-

tivity. Equation (1.1) is known as the Capacity/Conductivity form of the

one-dimensional Richards equation. In vertical flow situations, sin(ϑ) is

taken to be one, and thus the equation becomes

C(h)∂th = ∂z(K(h)(∂zh− 1)).

2



1.2 Parameter Estimation

Using partial differential equations to model physical systems is one

of the oldest activities in applied mathematics. A complete model requires

certain state inputs in the form of initial and/or boundary data together

with what might be called structure inputs such as coefficients or source

terms which are related to the physical properties of the system. Obtaining

a unique solution for the associated well posed problem constitutes what we

will call solving the direct problem. Solving the direct problem permits the

computation of various system outputs of physical interest. On the other

hand, when some of the required inputs are not available we may instead be

able to determine the missing inputs from outputs that are measured rather

than computed by formulating and solving an appropriate inverse problem.

In particular, when the missing inputs are one or more unknown coeffi-

cients in the partial differential equation, the problem is called a coefficient

identification problem.

The most common technique for identifying an unknown coefficient

from some measured output is the method of output least squares [15, 8,

24, 20, 21]. Here the unknown coefficient, χ, is chosen from an appropriate

space X and the output, Υ[χ], is computed by solving the direct problem.

One defines an error functional, E[χ] = ||Υ[χ] − y||2Y , comparing the com-

puted output to the measured value, y, in the norm of the output space, Y,

and seeks to minimize E over X. Output least squares (OLS) methods are

very general and can be efficiently programmed for computer implementa-

tion. Typically there are problems with lack of uniqueness, convergence to

false minima, and instability under parameter mesh refinement, although

a skillful user may be able to incorporate a priori information about the

3



solution into the parametric description of the unknown coefficient in order

to lessen some of these difficulties [15, 20]. General information about an

input to output mapping is not readily available from OLS methods, since

the connection between the inputs and outputs is expressed only indirectly

through the solver.

An alternative to coefficient identification by output least squares is the

so called equation error method [2, 16, 17, 9, 23]. Here the measured over

specification is used as input to the differential equation in the direct prob-

lem which is viewed then as an equation for the unknown coefficient. This

equation expresses a direct relationship between the unknown coefficient

values and the measured data values. Since the relationship is frequently

quite complicated, it is not easy to discern from equation error methods the

properties of an input to output mapping. Additionally, these methods are

quite problem dependent and produce varying degrees of success.

The Integral Identity method described in this paper is based on in-

tegral expressions relating changes in the unknown coefficients to corre-

sponding changes in the measured output. These integral equations are

derived by exploiting problems which are adjoint to the direct problem, an

idea close to the techniques often used to estimate sensitivity in the OLS

approach [24, 20]. The integral identities provide a means to study the

input/output map without constructing an error functional, as is required

with the OLS method. Integral identities are developed for two quasilinear

parabolic equations. The first problem considers the recovery of a single pa-

rameter while the second extends the technique to recover two independent

parameters.

4



1.3 Why?

The Richards Equation is perhaps the most widely applied model in

porous media flow. Numerical solutions to Richards equation play a signif-

icant role in ground-water simulation and contaminant transport models.

The validity of these depends on the accuracy of several soil parameters.

Typically, Richards equation is posed using water content Θ and soil con-

ductivity K as parameters. These parameters are calculated directly, via

experiments relatively unchanged since the 1850’s, or indirectly, through the

formulation of a suitable mathematical inverse problem. The direct exper-

iments are often tedious, and the goal of the inverse problem is to provide

a structure in which the experiments become easier to conduct, while still

providing accurate results. In this paper, the alternative Capacity Con-

ductivity formulation of the Richards equation is used, since this is more

amenable than the water content form to the inverse approach employed

here. Water capacity C(h), the derivative of water content Θ(h), describes

how the soil holds water. Hydraulic conductivity K(h) is a measure of soil

water flow in response to a hydraulic pressure gradient.

Output Least Squares is a well known and effective method for coef-

ficient inversion. While often the first tool used to approach many inverse

problems, it provides almost no explanation in cases of failure. Various tech-

niques have been made rigorous that strengthen the method. Little progress

has been made in explaining instances where recovery fails; whether the

OLS machinery is to blame, or rather some inherent ill-posedness of the

physical system. This research seeks to more completely understand the

underlying physical system. The Integral Identity method is shown here to

allow a more complete picture of the recovery process.

5



Integral identities are developed for two quasilinear parabolic equa-

tions. The first problem considers the recovery of a single parameter while

the second extends the technique to recover two independent parameters.

The preliminary work focuses on identification of the diffusion coefficient in

a quasilinear conduction diffusion equation of the form

∂tu(x, t) = ∂x(D(u(x, t))∂xu(x, t)).

While other methods can effectively recover this unknown ingredient, we

choose to explore integral identity methods. Many features of the Richards

Equation are present in this simpler setting, and this preliminary study

provided essential insight. Once the machinery was developed to treat the

one parameter case, work began on the simultaneous identification of the

water capacity, C(h), and hydraulic conductivity, K(h), functions of the

Richards equation,

C(h(z, t))∂th(z, t) = ∂z(K(h(z, t))(∂zh(z, t) − 1)).

Here we have written the one dimensional form with vertical downward

flow.

It is hoped that this research proves useful as both a tool to understand

parameter estimation in the porous media setting, and perhaps contribute

to a foundation for future work in adjoint approaches. Explicit numerical

methods are presented here, which allow rapid determination of parameter

information, and suggest a means to evaluate and adaptively control flow

experiments.

6



Chapter 2

ONE PARAMETER IDENTIFICATION

In this chapter we analyze the one parameter identification problem.

The method described in this chapter is based on an integral equation re-

lating changes in the unknown coefficient to corresponding changes in the

measured output. The integral equation is derived by exploiting a problem

which is adjoint to the direct problem. The integral equation provides di-

rect information about the input/output mapping. It is possible then to

prove that the input to output map is continuous, monotone and injective.

Moreover, it is shown that the input-output map is explicitly invertible

when restricted to a finite dimensional space of polygonal coefficients. This

observation provides the basis for a method for numerically approximating

the unknown coefficient. It is shown that a unique polygonal approxima-

tion to the unknown coefficient is obtained by solving a triangular system

of linear algebraic equations. Error estimates show that the accuracy of

the approximation is limited by the precision of the data measurements so

that there is an optimal attainable accuracy but exact determination of the

coefficient is never possible.

In the next sections, we develop the theoretic framework which is fun-

damental to the recovery algorithm. We begin with an analysis of the direct

problem.

7



2.1 Analysis of the Direct and Inverse Problems

Consider the following IBVP for a quasilinear conduction diffusion equation

on the domain QT = {0 < x < 1, 0 < t < T},

∂tu(x, t) = ∂x(D(u)∂xu(x, t)) = ∂xxB(u(x, t)) on QT (2.1)

u(x, 0) = f(0) 0 < x < 1

u(0, t) = f(t); ∂xu(1, t) = 0, 0 < t < T.

Here B(u) =

∫ u

f(0)

D(s) ds and we suppose

f ∈ C1[0, T ] and f ′(t) > 0 for t > 0 (2.2)

For f satisfying (2.2), we let J = [f(0), f(T )], and then suppose for

positive constants, D♭ ≤ D♯ and K,

D♭ ≤ D(u) ≤ D♯, for u ∈ J (a)

|D(µ2) −D(µ1)| ≤ K|µ2 − µ1| ∀µ1, µ2 ∈ J. (b)







(2.3)

Note that any polygonal function (i.e., a continuous and piecewise lin-

ear function) satisfies (2.3a) and that the difference of two functions satis-

fying both conditions of (2.3) is bounded away from zero and has at most

finitely many zeroes on J.

Using standard techniques, it has been shown that conditions 2.2 and

2.3 allow the initial value problem (2.1) to have a unique weak solution,

denoted by u, with the properties

u(x, t) ∈ L2[0, T : H1(0, 1)] ∩ C[0, T : L2(0, 1)] and

∂tu(x, t) ∈ L2[0, T : H−1(0, 1)].

The details of this argument may be found in appendix A.

8



We now consider the inverse problem in which the coefficient D = D(u)

is to be identified from measured output data. There are a variety of output

measurements that are experimentally feasible in any given physical setting;

we are going to base our identification on one or the other of the following

observations at the boundary,

g(t) = −D(u(0, t))∂xu(0, t) or

h(t) = u(1, t), 0 < t < T

If we denote the class of uniformly positive, Lipschitz coefficients D

satisfying (2.3) by W (J), then for a fixed f satisfying (2.2), we can define

mappings

Φ and Ψ : W (J) −→ L2[0, T ]

Φ[f,D] = g

Ψ[f,D] = h,

which assign to a coefficient D from W (J), the flux data g or the function

value data h, obtained by solving the direct problem (2.1) with inputs f

and D. Then solving the inverse problem will amount to inverting these

mappings.

We begin with a result about the IBVP (2.1).

Lemma 2.1.1. Suppose f and D satisfy (2.2) and (2.3) and let u = u(x, t)

denote the corresponding solution of (2.1). Then

a) for each t ∈ (0, T ), f(0) ≤ u(x, t) ≤ f(t), 0 ≤ x ≤ 1

b) ∂xu(x, t) < 0 almost everywhere on QT

9



Proof. It follows from (2.1) that

∂t[f(t) − u(x, t)] − ∂xx[B(f(t)) −B(u(x, t))] =f ′(t) on QT

f(0) − u(x, 0) =0 0 < x < 1

f(t) − u(0, t) = 0, ∂x[f(t) − u(1, t)] =0, 0 < t < T.

Then we multiply the equation by an arbitrary test function, ψ(x, t), and

integrate by parts,

−
∫ ∫

QT

[(f − u)∂tψ + (B(f) − B(u))∂xxψ] dx dt

+

∫ 1

0

(f − u)ψ
∣

∣

∣

t=T

t=0
dx

−
∫ T

0

[ψ∂x(B(f) − B(u)) − (B(f) −B(u))∂xψ]
∣

∣

∣

x=1

x=0
dt

=

∫ ∫

QT

f ′(t)ψ dx dt.

Note that

B(f(t)) − B(u(x, t)) = k(x, t)(f − u),

where we define k(x, t) = D(µ(x, t)) for µ(x, t) between f(t) and u(x, t).

Next we require ψ(x, t) to solve the adjoint problem,

∂tψ(x, t) + k(x, t)∂xxψ(x, t) =F (x, t) in QT ,

ψ(x, T ) =0, 0 < x < 1,

ψ(0, t) =0, ∂xψ(1, t) = 0, 0 < t < T,

for a smooth function F (x, t). Then the integral expression above reduces

to

−
∫ ∫

QT

(f − u)F (x, t) dxdt =

∫ ∫

QT

f ′(t)ψ(x, t) dxdt (2.4)
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The smoothness of k(x, t) and F (x, t) imply that the strong maximum

principle can be applied to the adjoint problem to conclude that if the

function F (x, t) is positive in QT , then ψ(x, t) < 0 ∈ QT . Since f satisfies

(2.2), it follows that for every function F (x, t) which is positive in QT , the

right side of (2.4) is negative. That is, for every F (x, t), smooth and positive

in QT ,
∫ ∫

QT

(f − u) F (x, t) dx dt > 0.

But this is just the assertion that f(t) − u(x, t) is positive in the sense of

distributions on QT . Given the smoothness of the solution u(x, t) this means

f(t) > u(x, t) almost everywhere on QT . Applying the same reasoning to

u(x, t) − f(0), we arrive at the expression

−
∫ ∫

QT

(u(x, t) − f(0)) F (x, t) dx dt =

∫ T

0

B(f(t))∂xψ(0, t) dt.

where we again use that ψ(x, t) < 0 in QT if the function F (x, t) is positive

in QT . Now this fact, together with the adjoint boundary conditions imply

that ∂xψ(0, t) < 0, for 0 < t < T. Then the conclusion follows as before.

This completes the proof of (a).

To prove (b), multiply both sides of (2.1) by ∂xφ(x, t) for an arbitrary

test function φ(x, t) and use integration by parts to arrive at

0 =

∫ ∫

QT

∂xu[∂tφ+D(u)∂xxφ] dx dt+

∫ T

0

φ∂tu
∣

∣

∣

x=1

x=0
dt

−
∫ 1

0

φ∂xu
∣

∣

∣

t=T

t=0
dx−

∫ T

0

∂xφ∂xB(u)
∣

∣

∣

x=1

x=0
dt.

Now require that φ(x, t) satisfies the adjoint problem

∂tφ(x, t) +D(u(x, t))∂xxφ(x, t) = F (x, t) in QT ,

φ(x, T ) = 0, 0 < x < 1,

∂xφ(0, t) = 0, φ(1, t) = 0, 0 < t < T.
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Then the preceding integral expression reduces to

∫ ∫

QT

∂xu(x, t)F (x, t)dxdt =

∫ T

0

φ(0, t)f ′(t)dt

The maximum principle can be applied to the adjoint problem to conclude

that φ(x, t) < 0 in QT if the continuous function F (x, t) is positive in QT .

In particular, φ(0, t) < 0 for 0 < t < T. Since f satisfies (2.2), it follows

that for every function F (x, t) which is positive in QT the right side of

the expression is negative. Then it follows as in the proof of part a) that

∂xu(x, t) < 0 almost everywhere in QT .

The results of this lemma are crucial to the proof of,

Lemma 2.1.2. Suppose f satisfies (2.2) and D1, D2 both satisfy (2.3).

Then if D1(u) > D2(u) for u ∈ J = [f(0), f(T )] it follows that,

a) Φ[f,D1](t) > Φ[f,D2](t), 0 < t < T,

b) Ψ[f,D1](t) < Ψ[f,D2](t), 0 < t < T.

Proof. For w in J, let B′

j(w) = Dj(w) for j = 1, 2. Also, let u1, u2 denote

the solutions for the direct problem with coefficients D1, D2, respectively.

Then

∂t(u1 − u2) − ∂xx(B1(u1) −B2(u2)) = 0 or

∂t(u1 − u2) − ∂xx(B1(u1) −B1(u2)) = ∂xx(B1(u2) − B2(u2))

and, for an arbitrary test functions φ = φ(x, t) and arbitrary τ, 0 < τ ≤ T,

∫ τ

0

∫ 1

0

[∂t(u1 − u2) − ∂xx(B1(u1) − B1(u2))] φ dx dt

=

∫ τ

0

∫ 1

0

φ ∂xx(B1(u2) − B2(u2)) dx dt.
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Apply integration by parts on the left side of this equation,

∫ τ

0

∫ 1

0

[∂t(u1 − u2) − ∂xx(B1(u1) −B1(u2))] φ dx dt

= −
∫ τ

0

∫ 1

0

(u1 − u2) {∂tφ+D1(µ(x, t))∂xxφ} dx dt

+

∫ 1

0

(u1 − u2)φ
∣

∣

∣

t=τ

t=0
dx

−
∫ τ

0

[φ ∂x(B1(u1) −B1(u2)) − ∂xφ (B1(u1) − B1(u2))]
∣

∣

∣

x=1

x=0
dt,

and on the right side as well,

∫ τ

0

∫ 1

0

φ {∂xx(B1(u2) − B2(u2))} dx dt

=

∫ τ

0

[φ ∂x(B1(u2) − B2(u2))]
∣

∣

∣

x=1

x=0
dt

−
∫ τ

0

∫ 1

0

(D1(u2) −D2(u2)) ∂xφ ∂xu2 dx dt

where for all (x, t) ∈ Qτ , µ(x, t) lies between u1(x, t) and u2(x, t) such that

for (x, t) ∈ Qτ

B1(u1(x, t)) − B1(u2(x, t)) = D1(µ(x, t))[u1(x, t) − u2(x, t)].

We then obtain the integral expression,

−
∫ τ

0

∫ 1

0

(u1 − u2) {∂tφ+D1(µ(x, t))∂xxφ} dx dt

+

∫ 1

0

(u1 − u2)φ
∣

∣

∣

t=τ

t=0
dx

−
∫ τ

0

[φ ∂x(B1(u1) −B2(u2)) − ∂xφ (B1(u1) −B1(u2))]
∣

∣

∣

x=1

x=0
dt

= −
∫ τ

0

∫ 1

0

(D1(u2) −D2(u2))∂xφ ∂xu2 dx dt.
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The boundary and initial conditions of the direct problem cause this ex-

pression to reduce to,

−
∫ τ

0

∫ 1

0

(u1 − u2) {∂tφ+D1(µ(x, t))∂xxφ} dx dt

+

∫ 1

0

(u1 − u2)(x, τ)φ(x, τ) dx

+

∫ τ

0

φ(0, t)∂x(B1(u1) −B2(u2))dt

−
∫ τ

0

∂x φ(1, t) [B1(u1) − B1(u2)] dt

= −
∫ τ

0

∫ 1

0

(D1(u2) −D2(u2))∂xφ∂x u2 dx dt (2.5)

Now require the arbitrary function φ(x, t) to solve the so-called g-

adjoint problem,

∂tφ+D1(µ(x, t))∂xxφ = 0 in Qτ (2.6)

φ(x, τ) = 0 0 < x < 1,

φ(0, t) = θ(t), ∂xφ(1, t) = 0, 0 < t < τ,

where θ(t) = F (τ − t) and F is any function satisfying (2.2). Then (2.5)

reduces to

∫ τ

0

θ(t)[g1(t) − g2(t)] dt =

∫ τ

0

∫ 1

0

(D1(u2) −D2(u2))∂xφ ∂xu2 dx dt. (2.7)

An argument similar to the one used in the proof of lemma (2.1.2),

applied to (2.6), shows that the assumption on the adjoint input, θ, implies

∂xφ(x, t) < 0 on Qτ . Since ∂xu2 < 0 on QT and D1(u2) > D2(u2) it follows

that the right side of the last expression is positive. Since (2.7) holds for

all θ(t) = F (τ − t), such that F satisfies (2.2), it follows that

g1(t) − g2(t) > 0 for 0 < t < T

i.e. g1(t) = Φ[f,D1](t) > Φ[f,D2](t) = g2(t).
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To see that this is true, note first that if D1(u) > D2(u) for u ∈ J,

then existence of an interval (0, t1) with g1(t) < g2(t) for 0 < t < t1 is

precluded by (2.7) simply by choosing τ = t1. Suppose then that there

exists t2 > t1 > 0 such that g1(t) ≥ g2(t) for 0 < t ≤ t1 and g1(t) < g2(t) for

t1 < t < t2. Then choosing τ = t2 in (2.7) implies that for any admissible

θ(t),

∫ t2

t1

θ(t)[g1(t) − g2(t)] dt =

∫ t2

t1

∫ 1

0

(D1(u2) −D2(u2))∂xφ ∂xu2 dx dt

+

∫ t1

0

∫ 1

0

(D1(u2) −D2(u2))∂xφ ∂xu2 dx dt

−
∫ t1

0

θ(t)[g1(t) − g2(t)] dt.

By applying equality (2.7) with τ = t1, the last two terms of the

previous equation vanish. By assumption, the right side of the resulting

expression is strictly positive, while a suitable choice of θ(t) makes the left

side negative. This contradicts (2.7).

Suppose now that we choose φ in (2.5) to solve a problem different

from (2.6). This problem will be called the h-adjoint problem,

∂tφ+D1(µ(x, t))∂xxφ = 0 in Qτ , (2.8)

φ(x, τ) = 0, 0 < x < 1,

φ(0, t) = 0, D(µ(1, t))∂xφ(1, t) = β(t), 0 < t < τ.

Here, choose β(t) = F (τ − t) where F is any function satisfying (2.2).

Then (2.5) reduces to

∫ τ

0

D(µ(1, t))∂xφ(1, t)(u1(1, t) − u2(1, t)) dt

=

∫ τ

0

∫ 1

0

(D1(u2) −D2(u2)) ∂xφ ∂xu2 dx dt,
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or

∫ τ

0

β(t) [h1(t) − h2(t)] dt =

∫ τ

0

∫ 1

0

(D1(u2) −D2(u2))∂xφ∂xu2dxdt. (2.9)

In this case, the hypotheses on β(t) imply that ∂xφ(x, t) > 0 on Qτ

and since ∂xu2 < 0 and D1(u2) > D2(u2) for all u2 in J, it then follows that

the right side of (2.9) is negative. Since this holds with β(t) = F (τ − t) for

any F satisfying (2.2), it follows that

Ψ [f,D1] (t) = u1(1, t) < u2(1, t) = Ψ [f,D2] (t) for 0 < t < τ.

Finishing the argument as in the previous case, we see that this holds for

τ ≤ T.

The conclusions of lemma 2.1.2 assert that input to output mappings

Φ and Ψ are monotone mappings. More precisely, the mapping Φ is isotone

while the mapping Ψ is an antitone mapping.

Now suppose D1(u1) and D2(u1) are any two coefficients, both sat-

isfying (2.3). Let u1(x, t), u2(x, t) denote the solutions of (2.1) when the

coefficient is, respectively, D1(u) and D2(u), and for i = 1, 2, let

gi(t) = Φ[f,Di] and

hi(t) = Ψ[f,Di], 0 < t < T.

Now choose the data in the adjoint problems (2.6) and (2.8) as,

φ(0, t) = θ(t) =
g1(t) − g2(t)

||g1 − g2||L2[0,T ]

, in (2.6)

and

D1(µ(1, t))∂xψ(1, t) = β(t) =
h1(t) − h2(t)

||h1 − h2||L2[0,T ]

in (2.8).
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It follows at once from (2.7) that

|| g1 − g2||L2[0,T ] ≤
∣

∣

∣

∣

∫ T

0

∫ 1

0

(D1(u2) −D2(u2)) ∂xu2 ∂xφ dx dt

∣

∣

∣

∣

≤ C ||D1 −D2||∞

and from (2.9) that

||h1 − h2||L2[0,T ] ≤
∣

∣

∣

∣

∫ T

0

∫ 1

0

(D1(u2) −D2(u2)) ∂xu2 ∂xψ dx dt

∣

∣

∣

∣

≤ C ||D1 −D2||∞

Evidently, this is just the assertion that Φ and Ψ are continuous as a

function of D from W (J) into L2[0, T ]; i.e.,

||g1 − g2||L2[0,T ] = ||Φ(f,D1) − Φ(f,D2)||L2[0,T ] ≤ C||D1 −D2||∞

||h1 − h2||L2[0,T ] = ||Ψ(f,D1) − Ψ(f,D2)||L2[0,T ] ≤ C||D1 −D2||∞.

Having shown that Φ and Ψ are continuous and strictly monotone, one

is encouraged to believe that this inverse problem is not so badly ill posed

and that Φ and Ψ might be continuously invertible. Such a strong result

seems to be unlikely without a simple ordering on the domain and range of

these maps but it is at least true that the input/output maps Φ and Ψ are

injective as the following lemma shows.

Lemma 2.1.3. For a fixed f satisfying (2.2) and coefficients D1, D2 ∈

W (J) let gk(t) = Φ[f,Dk] and hk(t) = Ψ[f,Dk], for k = 1, 2.

Then

a) Φ[f,D1] = Φ[f,D2], 0 < t < T, implies D1(u) = D2(u) for u ∈ J.

b) Ψ[f,D1] = Ψ[f,D2], 0 < t < T, implies D1(u) = D2(u) for u ∈ J.
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Proof. Suppose first that D1(f(0)) = D2(f(0)). Now, since D1 and D2

both satisfy (2.3), their difference satisfies (2.3) and if these functions are

not identical on J then there exists a positive time t1, 0 < t1 ≤ T, where

the difference, D1(f(t)) − D2(f(t)) is of one sign on [0, t1] . Then lemma

2.1.1(a) implies D1(u2(x, t)) −D2(u2(x, t)) is of one sign on (0, 1) × (0, t1).

Using the identity (2.7), we have

∫ t1

0

∫ 1

0

(D1(u2(x, t)) −D2(u2(x, t))) ∂xu2 ∂xφ dx dt

=

∫ t1

0

(g1(t) − g2(t)) θ(t) dt,

where φ solves (2.6) with τ = t1. Then the hypotheses imply the right side

of this equation vanishes; i.e.,

∫ t1

0

∫ 1

0

(D1(u2) −D2(u2)) ∂xu2 ∂xφ dx dt = 0

and this holds independently of the data θ(t) chosen as input to the adjoint

problem. It is clearly possible to choose θ(t) so that ∂xφ < 0 on (0, 1) ×

(0, t1) and in view of lemma 2.1.1(b) it is also the case that, ∂xu2 < 0 on

(0, 1) × (0, t1). Then the vanishing integral above has an integrand which

is of one sign over the domain of integration and vanishes on no positive

measure subset of the domain. This contradiction is in opposition to the

assumption that D1 and D2 are not identical.

If we suppose D1(f(0)) 6= D2(f(0)) then it follows that either there is

a smallest time t1, 0 < t1 < T, where the difference D1(f(t)) −D2(f(t)) is

zero, or else t1 = T and the difference is of one sign on [0, T ]. In either case,

it is evident that D1(f(t)) −D2(f(t)) is of one sign on [0, t1], 0 < t1 ≤ T,

and the argument can be completed as before. A similar argument, using

the identity in (2.9), establishes conclusion (b).
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Formally, we can write,

(Φ [f,D1] − Φ [f,D2] , θ)L2

def
= (δΦ [D1, D2] ∆D, θ)L2

=
〈

∆D,t δΦ [D1, D2] θ
〉

W (J)×W (J)∗
.

In view of (2.7),

(Φ [f,D1] − Φ [f,D2] , θ)L2 =

∫ T

0

(g1(t) − g2(t))θ(t) dt

=

∫ T

0

∫ 1

0

(D1(u2) −D2(u2)) ∂xu2 ∂xφ dx dt,

=
〈

∆D,t δΦ [D1, D2] θ
〉

W (J)×W (J)∗

Similarly,

(Ψ [f,D1] − Ψ [f,D2] , β)L2

def
= (δΨ [D1, D2] ∆D, β)L2

=
〈

∆D,t δΨ [D1, D2] β
〉

W (J)×W (J)∗
,

and, referring to (2.9),

(Ψ [f,D1] − Ψ [f,D2] , β)L2 =

∫ T

0

(h1(t) − h2(t))β(t) dt

=

∫ T

0

∫ 1

0

(D1(u2) −D2(u2)) ∂xu2 ∂xψ dx dt

=
〈

∆D,t δΨ [D1, D2] β
〉

W (J)×W (J)∗

Evidently, (2.7),(2.9) provide realizations for tδΦ[D1, D2] and tδΨ[D1, D2],

the Gateaux derivatives with respect to D of the mappings Φ and Ψ. It will

be shown in the next section that tδΦ[D1, D2] and tδΨ[D1, D2] are invertible

in an approximate sense. More precisely we will devise a restriction of the

coefficient to data maps that induces a mapping from R into R. The restric-

tion inherits the strict monotonicity and continuity from the coefficient to

data map hence the restriction defines a homeomorphism from its domain

onto its range. Inversion of this mapping leads to an approximate inverse

for the coefficient to data map.
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2.2 The Approximate Solution of the Inverse Problem

We consider the inverse problem in which the coefficient D = D(u) is

to be identified from data which is assumed to be recorded at fixed nodes

0 = t0 < t1 < · · · < tN = T in the interval [0, T ]:

data(f, g)

{

f(tk) = µk

g(tk) = −D(µk) ∂xu1(0, tk) = γk, k = 0, 1, ..., N

We are also interested in the identification of D1 = D(u1) based on the

alternative data,

data(f, h)

{

f(tk) = µk

h(tk) = u1(1, tk) = ηk, k = 0, 1, ..., N

More precisely, we are going use one or the other of these data sets to

construct a polygonal (i.e. piecewise linear and continuous) approximation

to the unknown coefficient D(u). The data set, fk = f(tk), k = 0, 1, . . . , N,

is assumed to be given at fixed nodes which define a partition, {0 = t0 <

t1 < . . . < tN = T}, of the interval I = [0, T ]. This partition of I will be

called the inner mesh. We then define an associated (but coarser) partition

of J = [f(0), f(T )], the domain of the coefficient D. This partition will be

called the outer mesh and is given by f(0) = µ0 < µ1 < · · · < µM = f(T ),

;i.e., µ0 = f0, and µM = fN and for each j = 1, ...,M < N we have µj = fk

for some k ≥ j.

It is necessary for the outer mesh to be coarser than the inner mesh

since on each subinterval in the outer mesh, we will need to compute in-

terior values of the solution u(x, t) for the direct problem in order to be

able to evaluate the integrals which appear in the identities used in the

identification. Between two outer mesh knots µj = f(tk) and µj+1, there

must occur several inner mesh knots and this fact prevents the outer mesh
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from being made arbitrarily fine in order to improve the accuracy of the

identification.

We can now consider a family of polygonal functions, D̂, associated

with the partition of J . Each member of the family is characterized by its

values at the nodes µk; i.e. ,for dk = D̂(µk). More precisely, we define

D̂(u) =

M
∑

k=1

dkλk(u) (2.10)

where

λk(u) =















0, if u < µk−1

u− µk−1

µk − µk−1
if µk−1 ≤ u ≤ µk

1, otherwise.

(2.11)

Equivalently, we could write, for 1 ≤ k ≤ M,

D̂(u) = dk−1 + (dk − dk−1)λk(u) for µk−1 ≤ u ≤ µk (2.12)

We will introduce several notations:

• D̂(u) = PM [d0, d1, . . . , dM ] denotes the polygonal coefficient given by

(2.10) based on nodal values [d0, d1, . . . , dM ].

• u(x, t;D, f) denotes the solution of the direct problem (2.1) with

coefficient D and data, f.

• φ(x, t;D, θ) denotes the solution of the adjoint problem (2.6) with

coefficient D(x, t)
def
= D(µ(x, t)) and data, θ(t).

• ψ(x, t;D, β) denotes the solution of the adjoint problem (2.8) with

coefficient D(x, t)
def
= D(µ(x, t)) and data, β(t)
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For a given f(t) satisfying (2.2), an unknown coefficient D = D(u)

satisfying (2.3) and measured flux data g(t) = Φ[f,D], we assume there is

a fixed outer partition, Π = {0 = µ0 < µ1 < · · · < µM = f(T )} of J. Then

we will define a polygonal coefficient approximation to D by the following

recursive algorithm based on the data pair {f(t), g(t)}:

• d0 is assumed to be given

• for k = 1, 2, ... dk is determined from d0, d1, ..., dk−1 by

(dk − dk−1)

∫ Tk

Tk−1

λk(u2) ∂xu2 ∂xφ dx dt

= −
∫ Tk

Tk−1

(g(t) − g2(t)) θ(t) dt, (2.13)

where

D1(u) = PM [d0, d1, . . . , dk−1, dk]

D2(u) = PM [d0, d1, . . . , dk−1, dk−1]

u2(x, t) = u(x, t;D2, f),

g2(t) = −D2(f(t))∂xu2(0, t) 0 ≤ x ≤ 1, 0 ≤ t ≤ Tk,

φ(x, t) = φ(x, t;D1, f(T − t)), for 0 ≤ x ≤ 1, 0 ≤ t ≤ Tk.

The approximation of D(u) based on data pair (f, h), {f(t), h(t)}, is

analogous. We can show then,

Lemma 2.2.1. For f(t) satisfying (2.2), for coefficient D satisfying (2.3)

and for a fixed partition, Π = 0 = µ0 < µ1 < · · · < µM = f(T ) of J, let the

nodal values [d0, d1, . . . , dM ] be determined by the algorithm (2.13). Then

for k = 1, 2, ...,M,

|D(µk) − dk| ≤ C |µk − µk−1| (2.14)
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Proof. We are going to assume that the initial nodal value, D(µ0) =

D(f(0)) = d0, is known and that the remaining values d1, . . . , dM are

determined by the algorithm (2.13). Consider first, the value d1. If we

apply the identity (2.7) with τ = T1, and

• on J1 = [µ0, µ1] , D1(u) = PM [d0, d1] , and D2(u) = PM [d0, d0] ,

• onQ1 = (0, 1)×(0, T1) u1(x, t) = u(x, t;D1, f) and u2(x, t) = u(x, t;D2, f)

then we have

∫ T1

0

∫ 1

0

(D1(u2) −D2(u2)) ∂xu2 ∂xφ dx dt =

∫ T1

0

(g(t) − g2(t))θ(t) dt.

Here g(t) is the measured flux data and g2(t) is the output generated

by solving (2.1) with the coefficient D(u) = D2(u); i.e., g2 = Φ[f,D2]. The

functions θ(t) and φ(x, t) denote the data and solution respectively for the

g-adjoint problem. Since the function f(t) in the direct problem satisfies

(2.2), it follows from Lemma (2.1.1)(a) that u2 satisfies

f(0) = µ0 ≤ u2(x, t) ≤ µ1 = f(T1) for (x, t) ∈ (0, 1) × (0, T1).

Then according to (2.12), for u ∈ J1 = µ0 ≤ u ≤ µ1,

D1(u) = d0 + (d0 − d0)λ1

D2(u) = d0 + (d1 − d0)λ1

and so D1(u2) −D2(u2) = (d1 − d0)λ1(u2).

Note that for each nodal value, µk, 0 ≤ k ≤M , we have u2(xk(t), t) =

µk along some curve x = xk(t), with xk(0) = µk and xk(τk) = 1 for some

τk > τk−1 > · · · > τ1 > 0. Examples of such curves are shown in figure 2.1.
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Figure 2.1: Isoclines

Then we have u2(x(t), t) = µ0 along a curve x = x0(t), with x0(0) = 0

and x0(τ1) = 1 for some τ1 > 0. We suppose further that T1 is sufficiently

small that 0 < x0(T1) < 1. Then

λ1(u2(x, t)) =







u2(x, t) − µ0

µ1 − µ0
if 0 ≤ x ≤ x0(t), 0 ≤ t ≤ T1

0 if x > x0(t) 0 ≤ t ≤ T1

and the integral identity reduces to

(d1 − d0)

∫ T1

0

∫ x0(t)

0

λ1(u2) ∂xu2 ∂xφ dx dt =

∫ T1

0

(g(t) − g2(t))θ(t) dt;

i.e.,

d1 = d0 +

∫ T1

0

(g(t) − g2(t))θ(t) dt

∫ T1

0

∫ x0(t)

0

λ1(u2) ∂x u2 ∂xφ dx dt

.
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This equation defines the first unknown nodal value d1. Now we will

establish the relationship between d1 and D(µ1). It follows from (2.7) that

∫ T1

0

∫ x0(t)

0

(D(u2) −D2(u2)) ∂xu2 ∂xφ dx dt

=

∫ T1

0

(g(t) − g2(t))θ(t) dt

=(d1 − d0)

∫ T1

0

∫ x0(t)

0

λ1(u2) ∂xu2 ∂xφ dx dt.

Let D̂M(u) denote the polygonal coefficient on the partition Π which

satisfies D̂M(µk) = D(µk) for all k. Note that this coefficient does not,

in general, generate the given measured data, g(t), and is not then the

polygonal coefficient with nodal values {dk} generated by the algorithm.

However, these coefficients are related as follows,

∫ T1

0

∫ x0(t)

0

(D(u2) −D2(u2)) ∂xu2 ∂xφ dx dt

=

∫ T1

0

∫ x0(t)

0

(D(u2) − D̂M(u2)) ∂xu2 ∂xφ dx dt

+

∫ T1

0

∫ x0(t)

0

(D̂M(u2) −D2(u2)) ∂xu2 ∂xφ dx dt

=

∫ T1

0

∫ x0(t)

0

(D(u2) − D̂M(u2)) ∂xu2 ∂xφ dx dt

+ (D(µ1) − d0)

∫ T1

0

∫ x0(t)

0

λ1(u2) ∂xu2 ∂xφ dx dt.

By combining these two expressions it follows that

(d1 −D(µ1))

∫ T1

0

∫ x0(t)

0

λ1(u2) ∂xu2 ∂xφ dx dt

=

∫ T1

0

∫ x0(t)

0

(D(u2) − D̂M(u2)) ∂xu2 ∂xφ dx dt

≤ max
J1

∣

∣

∣
D − D̂M

∣

∣

∣

∣

∣

∣

∣

∣

∫ T1

0

∫ x0(t)

0

∂xu2 ∂xφ dx dt

∣

∣

∣

∣

∣

.

25



Now

max
J1

∣

∣

∣
D − D̂M

∣

∣

∣
=
∣

∣

∣
D(µ∗) − D̂M(µ∗)

∣

∣

∣
for some µ∗ ∈ J1.

But

∣

∣

∣
D(µ∗) − D̂M(µ∗)

∣

∣

∣
≤ |D(µ∗) −D(µ0)| +

∣

∣

∣
D(µ0) − D̂M(µ∗)

∣

∣

∣

≤ K |µ∗ − µ0| +
∣

∣

∣
D̂M(µ0) − D̂M(µ∗)

∣

∣

∣
.

In addition,
∣

∣

∣
D̂M(µ0) − D̂M(µ∗)

∣

∣

∣
≤ K |µ∗ − µ0| , and

∣

∣

∣
D(µ∗) − D̂M(µ∗)

∣

∣

∣
≤ 2K |µ∗ − µ0| .

Then

|d1 −D(µ1)| ≤ 2K

∣

∣

∣

∫ T1

0

∫ x0(t)

0
∂xu2 ∂xφ dx dt

∣

∣

∣

∣

∣

∣

∫ T1

0

∫ x0(t)

0
λ1(u2) ∂xu2 ∂xφ dx dt

∣

∣

∣

|µ∗ − µ0| .

Since it is clear that for some λ∗1, 0 < λ∗1 < 1,

∫ T1

0

∫ x0(t)

0

λ1(u2) ∂xu2 ∂xφ dx dt = λ∗1

∫ T1

0

∫ x0(t)

0

∂xu2 ∂xφ dx dt

we find

1 ≤

∣

∣

∣

∫ T1

0

∫ x0(t)

0
∂xu2 ∂xφ dx dt

∣

∣

∣

∣

∣

∣

∫ T1

0

∫ x0(t)

0
λ1(u2) ∂xu2 ∂xφ dx dt

∣

∣

∣

≤ 1

λ∗1
<∞.

Then,

| d1 −D(µ1)| ≤
2K

λ∗1
|µ∗ − µ0| ≤ C1 |µ1 − µ0| .

This is the result (2.14) for k = 1.

In determining the succeeding values dk, we assume d0, d1, ..., dk−1 are

known and we let,

26



• on [µ0, µk], D1(u) = PM [d0, d1, . . . , dk−1, dk],

and D2(u) = PM [d0, d1, . . . , dk−1, dk−1],

• on Qk = (0, 1) × (0, Tk), u1(x, t) = u(x, t;D1, f),

and u2(x, t) = u(x, t;D2, f)

Then D1(u) and D2(u) are identical on [µ0, µk−1] and only differ on

Jk = [µk−1, µk] where we have

D1(u) = dk−1 + (dk − dk−1)λk for µk−1 ≤ u ≤ µk,

D2(u) = dk−1 for µk−1 ≤ u ≤ µk,

Then

∫ Tk

0

∫ 1

0

(D1(u2) −D2(u2)) ∂xu2 ∂xφ dx dt

=

∫ Tk

Tk−1

∫ 1

0

(D1(u2) −D2(u2)) ∂xu2 ∂xφ dx dt

=(dk − dk−1)

∫ Tk

Tk−1

∫ xk−1(t)

0

λk(u2) ∂xu2 ∂xφ dx dt.

and we have

(dk − dk−1)

∫ Tk

Tk−1

∫ xk−1(t)

0

λk(u2) ∂xu2 ∂xφ dx dt

=

∫ Tk

Tk−1

(g(t) − g2(t))θ(t) dt,

as prescribed by (2.13). Now we proceed as in the first part of the proof to

show that

|dk −D(µk)| ≤ C|µk − µk−1|.

The proof of the analogous result based on the data {f(tk), h(tk)} pro-

ceeds similarly.
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For d0 fixed and d1 > 0, let P1(d1)(u) = d0 ρ0(u) + d1 λ1(u) for u ∈ J1.

Then P1 is a mapping from [0,∞] into a one dimensional subspace ofW (J1).

It follows from (2.13) in the case k = 1 that

〈

∆D(u2),
t δΦ [P1(d1), P1(d0)] (θ)

〉

=
〈

(d1 − d0)λ1(u2),
t δΦ [P1(d1), P1(d0)] (θ)

〉

= (d1 − d0)

∫ T1

0

∫ x0(t)

0

λ1(u2) ∂xu2 ∂xφ dx dt

This means that the double integral in the expression above is a repre-

sentation for the derivative with respect to the parameter d, of the coefficient-

to-data mapping, Φ, restricted to the one dimensional subspace of W (J1).

Since the double integral can be shown to be nonzero, it follows that the re-

stricted input/output mapping is locally approximately invertible. Lemma

(2.2.2) asserts that, if we are given the data, {f(tk), g(tk)} or {f(tk), h(tk)} ,

then we can compute the nodal values {dk} which reproduce the measured

data in the sense of (2.13) and that these nodal values approach the nodal

values of the “true coefficient” D(u1), as the mesh size of the outer mesh

decreases. However, this conclusion ignores certain difficulties:

• it is not possible to know the coefficient D1(µ(x, t)) in the adjoint

problems since D1 is the coefficient we wish to identify and µ is an

indeterminate point between u1 and u2. This means we can only

approximate the solution to the adjoint problem and this will have an

influence on the conclusions of lemma (2.2.2).

• the integrals in the identity can only be approximated by numerical

integrations for which there is only a limited degree of refinement pos-

sible. This may further interfere with the agreement between dk and

D(µk).
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We will consider both of these effects, starting with the effect of the

approximate adjoint solution.

Note first, that the algorithm (2.13) asserts that in determining the

nodal value µk, it is necessary to solve the adjoint problem only on the

strip Sk = {(0, 1) × (Tk−1, Tk)}. Let φ̂(x, t) denote the adjoint solution

we compute using a convenient approximation for the unknown coefficient

D1(µ(x, t)) on this strip. For example, suppose the coefficient in the g-

adjoint problem is chosen to have the known constant value, dk−1; i.e.,

D1(µ(x, t)) = dk−1 µ(x, t) ∈ Jk = [µk−1, µk] .

Then if we replace φ in (2.13) by φ̂(x, t), we can denote the resulting

computed nodal value by d̂k. Note that with this choice for the coefficient,

there is now no difficulty in solving the adjoint problem (2.6) for φ̂ on

the strip, (0, 1) × [Tk−1, Tk] and proceeding to compute d̂k using (2.13). It

remains to be seen how the values d̂k compare to the values dk. We begin

with a lemma.

Lemma 2.2.2. Let f(t) satisfy (2.2), let coefficient D satisfy (2.3) and let

Π denote a fixed partition, Π = {µk = f(Tk) : k = 0, 1, ...,M} of J. For k

between 1 and M consider the following adjoint problem,

∂tφ(x, t) + c ∂xxφ(x, t) = 0, ∈ Sk

φ(x, Tk) = 0, x ∈ (0, 1)

φ(0, t) = f(Tk − t) t ∈ (Tk−1, Tk)

∂xφ(1, t) = 0, t ∈ (Tk−1, Tk)
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Suppose {φi, ci}, i = 1, 2 denote two solutions to the adjoint problem

corresponding to distinct choices of the coefficient c. In particular, suppose

φ1 = φ(x, t, c1, θ) for the constant c1 = dk−1, while φ2 = φ(x, t, c2, θ)

corresponding to the choice, c2(x, t) = D(µ(x, t)), where µ(x, t) denotes a

function that is continuous on the strip Sk = (0, 1)× (Tk−1, Tk) with values

in Jk = [µk−1, µk]. Then

|| ∂x(φ1 − φ2)||L2(Sk) ≤ C |µk − µk−1|

Proof. Begin by noting that ∆φ = φ1 − φ2 satisfies,

∂t(∆φ) + c1 ∂xx(∆φ) = (c2 − c1) ∂xxφ2, (x, t) ∈ Sk

∆φ(x, Tk) = 0, x ∈ (0, 1)

∆φ(0, t) = 0, ∈ (Tk−1, Tk),

∂x(∆φ)(1, t) = 0,t ∈ (Tk−1, Tk),

and if ψ denotes an arbitrary test function, then
∫∫

Sk

{∂t(∆φ) + c1 ∂xx(∆φ)} ∂xψ dxdt =

∫∫

Sk

{−∆c ∂xxφ2} ∂xψ dxdt.

Integration by parts yields,
∫∫

Sk

∂t(∆φ)∂xψ dxdt =

∫∫

Sk

∂x(∆φ)∂tψ dxdt

+

∫ 1

0

∆φ ∂xψ|t=T
t=0 dx

−
∫ Tk

Tk−1

∆φ ∂xψ|x=1
x=0dt,

and
∫∫

Sk

∂xx(∆φ) ∂xψ dxdt = −
∫∫

Sk

∂x(∆φ)∂xxψ dxdt

+

∫ Tk

Tk−1

∂x(∆φ) ∂xψ|x=1
x=0dt,
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s0
∫∫

Sk

∂x(∆φ)[∂tψ − c1∂xxψ] dxdt+

∫ 1

0

∆φ ∂xψ|t=Tk

t=Tk−1
dx

−
∫ Tk

Tk−1

∆φ ∂xψ|x=1
x=0dt+ c1

∫ Tk

Tk−1

∂x(∆φ) ∂xψ|x=1
x=0dt

=

∫∫

Sk

{−∆c ∂xxφ2} ∂xψ dxdt

Now choose the test function ψ to satisfy

∂tψ − c1∂xxψ = ∂x(∆φ), (x, t) ∈ Sk

ψ(x, Tk−1) = 0, x ∈ (0, 1)

∂xψ(0, t) = 0, ψ(1, t) = 0, t ∈ (Tk−1, Tk)

Then the previous integral identity reduces to
∫∫

Sk

[∂x(∆φ)]2dxdt =

∫∫

Sk

(c2 − c1) ∂xxφ2 ∂xψ dxdt.

Now, ψ is the solution to a linear problem with constant coefficients so

it can be expressed in terms of a Green’s function, Γ(x, t),

ψ(x, t) =

∫ t

Tk−1

∫ 1

0

Γ(x− y, t− τ) ∂x(∆φ)(y, τ) dydτ, (x, t) ∈ Sk,

and

∂xψ(x, t) =

∫ t

Tk−1

∫ 1

0

∂xΓ(x− y, t− τ) ∂x(∆φ)(y, τ) dydτ.

Then for all (x, t) ∈ Sk,

| ∂xψ(x, t)| ≤
∫ t

Tk−1

∫ 1

0

|∂xΓ(x− y, t− τ) ∂x(∆φ)(y, τ)| dydτ,

≤
(

∫ Tk

Tk−1

∫ 1

0

|∂xΓ(x− y, t− τ)| 2dydτ

)1/2

×
(

∫ Tk

Tk−1

∫ 1

0

|∂x(∆φ)(y, τ)|2 dydτ
)1/2
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and

max
(x,t)∈Sk

| ∂xψ(x, t)| ≤ C || ∂x(∆φ)||L2(Sk) .

Then it follows that

∫∫

Sk

[∂x(∆φ)]2 dx dt =

∣

∣

∣

∣

∣

∣

∫∫

Sk

(c2 − c1) ∂xxφ2 ∂xψ dxdt

∣

∣

∣

∣

∣

∣

≤ max
Sk

|∆c(x, t)|
∫∫

Sk

|∂xxφ2 ∂xψ| dxdt

≤ max
Sk

|∆c(x, t)| || ∂xxφ2 ||L1 || ∂xψ||∞

and

|| ∂x(∆φ)||L2(Sk) ≤ C max
Sk

|∆c(x, t)| .

Also

max
Sk

|∆c(x, t)| = max
Sk

|dk−1 −D(µ(x, t))|

≤ |dk−1 −D(µk−1)| + max
Sk

|D(µk−1) −D(µ(x, t))|

≤ 2K |µk − µk−1| .

Then, it follows that,

|| ∂x(∆φ)||L2(Sk) ≤ C |µk − µk−1| .

Now we will use this estimate in considering the effect of using the

approximate adjoint solution in the determination of the first nodal value,

d1. It follows from (2.13) that the difference between the value, d1, computed
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using the correct but unknown adjoint solution and the value, d̂1, computed

using an incorrect but computable adjoint solution is given by,

d̂1 − d1 =

∫ T1

0

(g(t) − g2(t))θ(t) dt

∫ T1

0

∫ x0(t)

0

λ1(u2) ∂xu2 ∂xφ̂ dx dt

−

∫ T1

0

(g(t) − g2(t))θ(t) dt

∫ T1

0

∫ x0(t)

0

λ1(u2) ∂xu2 ∂xφ dx dt

=
(g − g2, θ)

II(φ̂)
− (g − g2, θ)

II(φ)

=(g − g2, θ)

{

1

II(φ̂)
− 1

II(φ)

}

d̂1 − d1 = (d1 − d0)

{

II(φ) − II(φ̂)

II(φ̂)

}

Here

II(φ̂) =

∫ T1

0

∫ x0(t)

0

λ1(u2) ∂xu2 ∂xφ̂ dx dt.

We wish to show that as the outer mesh is refined, the discrepancy

II(φ) − II(φ̂) that is due to solving the adjoint problem with the wrong

coefficient decreases to zero. On the other hand, II(φ̂) also decreases to-

ward zero as the mesh is refined. To see whether II(φ̂) decreases more

or less rapidly than II(φ) − II(φ̂), it is necessary to examine the asymp-

totic behavior of II(φ̂). We assume that x0(T1) < 1 since if this is not the

case, we can always refine the outer partition to shrink the width of the

strip S1 so as to make it true. Then the domain of integration for II(φ̂)

is the approximately triangular region {0 ≤ x ≤ x0(t), 0 ≤ t ≤ T1} . An ex-

act analysis of the asymptotic rate of convergence of II(φ̂) as T1 tends to

zero is difficult, but if we assume that f(t) = At for a positive constant
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A, then it is possible to solve explicitly for u2(x, t) and φ̂(x, t). Using ar-

guments like those in [1], one finds that g(t) = −D(u1(0, t)) ∂xu1(0, t) and

g2(t) = −dk∂xu2(0, t) behave asymptotically like
√
t.

This leads to

∫ T1

0

(g(t) − g2(t))θ(t) dt =

∫ T1

0

(g(t) − g2(t))A(T1 − t) dt

≈ C T
5/2
1

A similar crude estimate for ∂xu2 ∂xφ̂ on 0 ≤ x ≤ 1, 0 ≤ t ≤ T1, is the

following

∂xu2 ∂xφ̂(x, t) ≈
√
tm(x)

√

T1 − tm(x)

where m(x) denotes a decreasing function with m(0) = 1 and m(1) = 0. In

addition, for T1 small, one can suppose x0(t) ≈ at for a positive constant a,

and this leads to

II(φ̂) =

∫ T1

0

∫ x0(t)

0

λ1(u2) ∂xu2 ∂xφ̂ dx dt

≈
∫ T1

0

∫ at

0

u2(x, t)

AT1

√
tm(x)

√

T1 − tm(x) dx dt

i.e. II(φ̂) ≈ CT
5/2
1 . (2.15)

Since this estimate (2.15) is rather rough, the quantity II(φ̂) was com-

puted numerically for a sequence of values for T1 decreasing to zero. The

result of this numerical asymptotic estimate supported the estimate (2.15)

which asserts that II(φ̂) decreases like the 5
2

power of T1 as T1 tends to

zero.

Now

d̂1 − d1 = (d1 − d0)

{

II(φ) − II(φ̂)

II(φ̂)

}

and,
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∣

∣

∣
II(φ) − II(φ̂)

∣

∣

∣
=
∣

∣

∣

∫ T1

0

∫ x0(t)

0
λ1(u2) ∂xu2 [∂xφ− ∂xφ̂] dx dt

∣

∣

∣

≤ C(T1) || ∂x(∆φ)||L2(S1) ≤ C(T1) |µ1 − µ0| .

Also,

| d1 − d0| = |D(µ1) −D(µ0)| ≤ K |µ1 − µ0| ,

and hence

∣

∣

∣
d̂1 − d1

∣

∣

∣
≤ |d1 − d0|

∣

∣

∣

∣

∣

II(φ) − II(φ̂)

II(φ̂)

∣

∣

∣

∣

∣

≤ K C(T1)

II(φ̂)
|µ1 − µ0|2 .

Then for T1 sufficiently small,

∣

∣

∣
d̂1 − d1

∣

∣

∣
≤ K C(T1)

CT
5/2
1

|µ1 − µ0|2

≤ K f ′(τ)2

C
T

−1/2
1 for some τ > 0.

In general, we have

Lemma 2.2.3. For f(t) = At, A > 0, for coefficient D satisfying (2.3)

and for a fixed partition, Π = {µk = ATk : k = 0, 1, ...,M} of J, fix k be-

tween 1 and M. Let φ̂ = φ(x, t, dk−1, A(Tk − t)) and φ = φ(x, t, c, A(Tk − t))

corresponding to the coefficients, dk−1 and c(x, t) = D(µ(x, t)), respectively.

Finally, let d̂k and dk denote the nodal values determined from (2.13) using

the values [d0, d1, ..., dk−1] and the adjoint solutions φ̂ and φ, respectively.

Then

∣

∣

∣
d̂k − dk

∣

∣

∣
≤ K

II(φ̂)
|µk − µk−1|2 ≤

K f ′(τ)2

C
|Tk − Tk−1|−1/2.
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This lemma implies that the error introduced into the identification

by solving the adjoint problem with an approximate coefficient has an in-

creasing effect as the outer mesh is refined. As the mesh is refined, the

discrepancy II(φ) − II(φ̂) does tend to zero like the square of the mesh

size. However, as the mesh size tends to zero, we find also that II(φ̂),

which can be viewed as an approximation to the Gateaux derivative of the

mapping Φ restricted to a one dimensional subspace of W (Jk), tends to

zero even faster, (like the 5
2

power of the mesh size). It is likely that the

means of approximating the adjoint solution could be improved so that

II(φ)− II(φ̂) would approach zero sufficiently rapidly that
∣

∣

∣
d̂k − dk

∣

∣

∣
would

tend to zero as the mesh size goes to zero. However, the next result will

show that such an improvement does not improve the convergence of the

approximate solution.

We wish finally to consider the effect of numerical integration errors

on the calculation of d̂k. We begin by considering k = 1. We have,

d̂1 = d0 +

∫ T1

0
(g(t) − g2(t))θ(t) dt.

∫ T1

0

∫ x0(t)

0
λ1(u2) ∂xu2 ∂xφ̂ dx dt

= d0 +
I(g − g2)

II(φ̂)

and

d̂∗1 = d0 +
I∗(g − g2)

II∗(φ̂)

where I∗(g− g2) and II∗(φ̂) denote, respectively, the computed results

using the inner mesh to numerically approximate the corresponding exact

single and double integrals. Then

d̂∗1 = d0 +
I∗(g − g2) − I(g − g2) + I(g − g2)

II∗(φ̂) − II(φ̂) + II(φ̂)

= d0 +
I(g − g2)

II(φ̂)

1 + ε1

1 + ε2
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where

ε1 = |I − I∗

I
| and ε2 = |II − II∗

II
|.

Now
1 + ε1

1 + ε2
≈ 1 + ε1 + ε2

so

d̂∗1 = d0 +
I(g − g2)

II(φ̂)

1 + ε1

1 + ε2
≈ d0 +

I(g − g2)

II(φ̂)
(1 + ε1 + ε2),

and
∣

∣

∣
d̂1 − d̂∗1

∣

∣

∣
≤
∣

∣

∣

∣

∣

I(g − g2)

II(φ̂)

∣

∣

∣

∣

∣

(ε1 + ε2) =
∣

∣

∣
d̂1 − d0

∣

∣

∣
(ε1 + ε2).

The numerical integration errors are estimated by terms of the form,

|I − I∗| ≤ C(∆t)2 for ∆t =inner mesh size

and |II − II∗| ≤ C(∆x∆t) = C(∆t)2

Use of higher order integration schemes is limited by the fact that

reducing the mesh size of the outer or J −mesh in order to achieve identi-

fication accuracy absorbs I −mesh node points into the J −mesh leaving

only enough points in the inner mesh to perform low order numerical inte-

grations.

It follows from (2.2) and (2.15) that

I =
∫ T1

0
(g(t) − g2(t))A(T1 − t)dt ≈ T

5/2
1 ,

II =
∫ T1

0

∫ x0(t)

0
λ1(u2) ∂xu2 ∂xφ dx dt ≈ T

5/2
1

Then, since T1 = k∆t, we find
∣

∣

∣
d̂1 − d̂∗1

∣

∣

∣
≤
∣

∣

∣

∣

∣

I(g − pM)

II(φ̂)

∣

∣

∣

∣

∣

(ε1 + ε2)

≤
∣

∣

∣
d̂1 − d0

∣

∣

∣

C1(∆t)
2

C2 (k∆t)5/2
≤ C(∆t)−1/2.

More generally, we have

Lemma 2.2.4. Under the conditions of (2.2.3), let d̂∗k reflect the error in-

duced in d̂k by numerically approximating the integrals needed for (2.13).
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Then, as the (inner and outer) mesh size tends to zero,

∣

∣

∣
d̂k − d̂∗k

∣

∣

∣
≤ C(∆t)−1/2

This estimate suggests that as the outer mesh is refined in order to

improve the accuracy of the identification of the nodal values ofD(u1),more

and more node points of the inner mesh are absorbed into the outer mesh,

resulting in numerical integration errors, |I − I∗| and |II − II∗| , that are

of order ∆t2. At the same time, the approximate Gateaux derivative II(φ̂)

tends to zero like ∆t5/2 so the effect of approximating the integrals becomes

magnified at ∆t tends to zero. Evidently, at some point the values of the

integrals used to compute dk become of the same order of magnitude as the

numerical integration errors and the computation then no longer contains

information. Further decreasing the mesh size then only increases the error.

Finally, we can combine lemmas 2.2.1, 2.2.3 and 2.2.4 to write
∣

∣

∣
D(µk) − d̂∗k

∣

∣

∣
=
∣

∣

∣
D(µk) − dk + dk − d̂k + d̂k − d̂∗k

∣

∣

∣

≤ |D(µk) − dk| +
∣

∣

∣
dk − d̂k

∣

∣

∣
+
∣

∣

∣
d̂k − d̂∗k

∣

∣

∣

and,

∣

∣

∣
D(µk) − d̂∗k

∣

∣

∣
≤ C1∆t+ C2(∆t)

−1/2. (2.16)

Evidently the error in identifying dk does not tend to zero as ∆t tends

to zero but is minimized by an optimal ∆t different from zero.
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Chapter 3

ONE PARAMETER NUMERICAL

EXPERIMENTS

3.1 One parameter problem

In this section, we present a numerical implementation of a recovery

algorithm and analyze this process via a series of numerical experiments.

We consider several numerical experiments designed to gain insight into the

recovery of the unknown coefficient D(u) in the one parameter quasilinear

conduction diffusion equation given by

∂tu(x, t) = ∂x(D(u)∂xu(x, t)) on 0 < x < L, 0 < t < T. (3.1)

We choose to interpret this model as the heat equation, and as such

will refer to the coefficient D(u) as the conductivity coefficient. The method

presented here is based on the integral identities

∫ τ

0

G∗(t)[g(t) − g2(t)] dt =

∫ τ

0

∫ L

0

(D(u2) −D2(u2))∂xφ ∂xu2 dx dt, (3.2)

which we refer to as the g-integral identity, and

∫ τ

0

H∗(t)[h(t) − h2(t)] dt =

∫ τ

0

∫ L

0

(D(u2) −D2(u2))∂xφ ∂xu2 dx dt, (3.3)

which we call the h-integral identity.
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The algorithm constructed in this chapter creates a linear polygonal

approximation to the unknown coefficient D(u) utilizing observations of

the system. Although it might be possible to place thermocouples over the

length of the media and record this interior information over time, instead

we restrict the observed measurement to take place on the boundary of the

media, at x = 0 and x = L. While not the only observable boundary mea-

surements, the flux g(t) = D(u(0, t)∂xu(0, t) and the state h(t) = u(L, t) are

easily obtained. Both maps Φ[f,D] → g and Ψ[f,D] → h have been shown

to be continuous and invertible under monotone forcing via the integral

identities.

We begin with a description of the numerical details.

3.2 Numerical methodology

The nonlinear PDE (3.1) was discretized on a non-uniform space grid.

The resulting system of ODEs was then submitted to a implicit time in-

tegration scheme. This use of robust and sophisticated implicit schemes

allowed control of many aspects of the numerics, such as relative and ab-

solute error and the use of backward differentiation formulas. The Matlab

ODE suite of solvers were used. The piecewise linear coefficient was passed

as a call-out table in the state variable, which was then evaluated (via

linear interpolation) by Matlab in each evaluation needed for the time in-

tegration. In addition, the numerical solution was returned in a ‘structure’

format, which allowed high order numerical interpolation schemes to be

used to evaluate this solution between computed nodes. This allowed the

solution to be projected onto a wide range of time nodes easily.
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The standard finite difference scheme was used. Using a space dis-

cretization over the grid {0 = x1, x2, ..., xn−1, xn = L}, and the convention

that u(xi, t) = ut
i, the scheme can be written

u̇t
i =

(

D(ut
i+1/2)

(

ut
i+1 − ut

i

)

)

−
(

D(ut
i−1/2)

(

ut
i − ut

i−1

)

)

(∆x)2 ,

although here it was implemented for use on a possibly non uniform grid,

and was written

u̇t
i =

(

D(ut
i+1/2)

ut

i+1
−ut

i

∆xi

)

−
(

D(ut
i−1/2)

ut

i
−ut

i−1

∆xi−1

)

∆xi−1/2

.

Non-uniform grids were occasionally used in an attempt to more ac-

curately represent dynamics near the boundaries. Several numerical tests

indicated that that modest sized uniform grids would provide sufficient ac-

curacy in a reasonable compute time.

The scheme above produces u̇t
i values on the interior nodes designated

by i from 2 to k− 1. The boundary conditions are applied via ghost nodes,

in which ut
1 is set equal to f(t) to enforce the Dirichlet condition, and

ut
k is set equal to ut

k−1 to impose the homogeneous Neumann condition.

These assignments are made prior to the evaluation of u̇t
i on each time level.

Linear interpolation was used to calculate the required values on half nodes.

This discretization, which transformed the PDE in a system of ODEs, was

then passed to a Matlab ODE initial valued problem (IVP) integrator.

This FD / IVP method had several benefits - although the most significant

might be the ease with which this methods was implemented using Matlab.

The Matlab suite of ODE solvers include a wide selection of well tested

integrators, as well as the ability to control may aspects of the integration.
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We note that the values returned from the time integrator represent only

those values on interior nodes, and therefore need to be augmented via the

boundary rules after computation to generate boundary observations.

In addition to the initial values solvers, Matlab is also able to solve

boundary value problems (BVPs). The use of the bvp4c would eliminate

the need for a fixed space discretization, and capture behavior near the

boundary well. However, a toy implementation proved to increase com-

putation time excessively, and the BVP / IVP method was therefore not

applied to the full problem. Finite Element methods (FEM) could also have

been implemented, but the additional flexibility offered by these methods

didn’t appear to justify their use.

3.3 Recovery algorithm

The integral identities (3.2,3.3) allow us to explore an approximation

of the input to output map. A restriction of f(t), which is a controlled

quantity in the direct experiment, to a monotone function allows us to

apply a weak version of a maximum-minimum principle. Assuming for the

sake of discussion that f is monotone increasing, then

f(0) = u0 ≤ u(x, t) ≤ f(T ) = u(0, T )

for all (x, t) in the time space domain UT = (0, 1)×(0, T ). We now recognize

a chain of implication. By lemma 4.1.1, the time discretization {0 = t0 <

t1 < . . . < tk} leads to corresponding discretization of the range of f ,

{f0 = f(t0) < f(t1) < . . . < f(tk) = fk}. The range of f is also the

domain of D(u), by the maximum principle. Therefore we can parameterize

a piecewise linear approximation of the coefficient D(u) by

D(u) ≈ D̃(u) =

M
∑

k=0

δkλk,
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where the λk’s are defined to be

λk(u) =















1, if u > µk

u− µk−1

µk − µk−1

if µk−1 ≤ u ≤ µk

0, otherwise.

(3.4)

With is in mind, we now state our goal: We seek the set of values

{dk} for k = 1..N so that D̃ approximates the true coefficient D. We note

that D̃ is a polygonal approximation to D and is therefore in Lip(R). It

should then be possible to recover D̃ from suitable experimental data. In

numerical implementation, we make the further approximation

D̃(u) ≈ D̂(u) =

N
∑

k=0

dkλk,

an approximation of D̃(u) over some {fj}N nodes, for which the previous

statements still hold.

The Algorithm

To begin, we apply the g-integral identity (2.7) on Q1 = [0, 1]× [0, T1].

Since the solution of the direct problem satisfies lemma 2.1.1(a), we have

µ0 ≤ u1(x, t) ≤ µ1 for (x, t) ∈ Q1. Then only the known nodal value d0

and the unknown nodal value d1 are active on this strip. We are going to

compute the unknown nodal values iteratively and we denote the i − th

iteration for dk by d
(i)
k . We set d

(0)
1 = d0.

We apply the integral identity (2.7) on Q1 with,

D1 = P1

[

d0, d
(1)
1

]

and D2 = P1

[

d0, d
(0)
1

]

u2(x, t) = u(x, t;D2, At) and g2(t) = Φ [f,D2]

φ̂(x, t) = φ(x, t;D2, A(T1 − t))

We compute A11 =
∫ T1

0

∫ x0(t)

0
λ1(u2) ∂xu2 ∂xφ̂ dx dt,
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b1 =
∫ T1

0
(g(t) − g2(t))A(T1 − t) dt

and solve

A11(d
(1)
1 − d0) = b1.

Note that A11 and b1 are computed from u2, φ̂, g2 which are all based

on the known coefficient D2.

To continue, we apply the g-integral identity (2.7) first on Q1, where

only d0, d1 are active, and then we apply the g-integral identity (2.7) again,

but now on Q2 where d0, d1, d2 are active. That is,

on Q1 D1 = P1

[

d0, d
(2)
1

]

d
(2)
1 is unknown,

and D2 = P1

[

d0, d
(1)
1

]

d
(1)
1 is known,

and we compute A11 and b1 as before.

Note that u2, φ̂, g2 are based on the updated coefficient D2 so that,

in general, d
(2)
1 will not be the same as d

(1)
1 .

On Q2 D1 = P2

[

d0, d
(2)
1 , d

(1)
2

]

and D2 = P2

[

d0, d
(1)
1 , d

(0)
2

]

note : d
(0)
2 = d

(1)
1

we compute

A2,1 =

∫ ∫

Q21

λ1(u2)∂xu2∂xφ̂ dx dt

Q21 = {µ0 ≤ u2(x, t) ≤ µ1, 0 ≤ t ≤ T2}

A2,1 =

∫ T2

T1

∫ x1(t)

0

λ2(u2)∂xu2∂xφ̂ dx dt

b2 =

∫ T2

0

(g(t) − g2(t))A(T2 − t) dt

and we solve
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[

A11 0

A2,1 A2,2

][

d
(2)
1 − d

(1)
1

d
(1)
2 − d

(0)
2

]

=

[

b1
b2

]

We proceed in this way, where at the k-th stage we apply the integral

identity k times, once on each of the strips Q1 to Qk. Of course this produces

k equations, one for each strip. On each strip, Qj there are only j unknown

active node values d
(p)
1 , ..., d

(q)
j , at various stages of iteration, hence the j-th

equation contains only the first j unknowns. This leads to a k by k lower

triangular system for the differences d
(p)
j − d

(p−1)
j . At the k-th stage of the

algorithm we are solving for the first iterate for dk, for the second iterate of

dk−1, etc. This algorithm, which we will call the iterative algorithm, differs

from the non-iterative algorithm described in the preceding section. The

non-iterative algorithm amounts to suppressing the iterative feature so that

for each k, the nodal value dk is obtained by solving just a single equation,

Akk(dk − dk−1) = bk.

3.4 Numerical Code

The numerical code consists of two main parts. The first, the ex-

periment algorithm, allowed numerical simulation the solution in the entire

domain, and the generation of boundary data D(u(0, t)∂xu(0, t) = g(t) and

u(L, t) = h(t). The ability to quickly simulate a wide range of experiments

was extremely useful. The second, the recovery algorithm, was implemen-

tation based on the integral identity method. This algorithm utilized the

boundary data observations in company with the initial and boundary con-

ditions used to generate this data. The recovery code sought to identify the

unknown diffusion coefficient when supplied with experimentally observed

data.
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All numerical methods were coded for the Matlab 6.1 environment.

Preliminary work was performed under Matlab v5.3, although the expanded

functionality of the v6.1 was quickly realized to provide more flexibility in

implementation. In particular, the improvements made in the ODE suite

package of v6.1 proved useful. The call to the ode solver was simplified,

and the solution could be returned as a Matlab structure, which allowed

the solution to be evaluated post computation on any time level in an

appropriate interval. This greatly simplified experiments requiring time

scale refinement.

The PDE was discretized using Finite Difference (FD) methods in

space to produce a system of ODEs. Non-uniform grids were occasion-

ally used in an attempt to more accurately represent dynamics near the

boundaries. Several numerical tests indicated that that modest sized uni-

form grids would provide the sufficient accuracy in a reasonable compute

time. Finite Element methods (FEM) could also have been implemented,

but the additional flexibility, such as grid refinement, offered by these meth-

ods didn’t appear to justify their use. The values of the unknown variable

were recorded on whole knots on the spatial grid.

3.4.1 Direct algorithm implementation

In this section we discuss the code used to generate a numerical solution

to the direct problem. Subsequent work required that the code be fairly

efficient and flexible. The nonlinear term of the equation was managed at

each time level evaluation as a linear interpolation of a passed call-out table.

The resulting system of ODEs were submitted to Matlab’s time integration

methods, as chosen by the user. We now present a template for the code

used to generate the so called direct solution.
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3.4.2 Pseudo Code for the Direct Problem

A pseudo-code to generate the direct solution is as follows:

function dudt = udot(t,u,D,F);

% function dudt = udot(t,u,D,F);

% computes

% dudt = ddx(D(u) dudx)

% Boundary conditions are hard coded

% with u(0,t) = f(t) and dudx(1,t) = 0

global XXX

dx = diff(x);

% set bc’s

u = [NaN ; u ; NaN];

u(1) = feval(F,t); % make u(0,t) = f(t)

u(end) = u(end-1); % make dudx(end,t) = 0

% find D on nodes

Du = evaluate(D,u);

%compute udot

dudt = diff(Du .* diff(u)./ dx) ./ dx;

Matlab ODE solvers require a ‘dot’ function which takes as input a

scaler t and vector valued (column) u, and returns the time derivative as

a column vector. For this problem, we require the additional information

F and D, both of which are names of user defined Matlab function files.

Dirichlet boundary conditions are enforced on the first node and homo-

geneous Neumann on the last node. This is done by injecting artificial

‘ghost’ nodes. The Dirichlet condition is easily enforced, and the no flux

condition is implemented by the replication of the original last value of u,
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which makes the right sided difference naturally zero. Notice that the time

derivative that is returned is only given on the interior mesh nodes. The

boundary values are not explicitly computed in this dot file, but instead are

assigned at a later point in time.

This code was used in several ways in the resulting experiments. It

was used to generate numerical experimental data, and was also called in

by the recovery scheme. In an attempt to isolate the recovery process from

the generation of the numerical data, the direct solvers, time and space grid

were chosen independently.

The actual Matlab code used was ‘vectorized’- i.e. written so as to

accept matrix valued input for u. This resulted in a large computational

improvement. The complete code may be found in the appendix.

3.4.3 Experiment Algorithm implementation

In order to generate sufficient data, a numerical algorithm was written

to construct a numerical solution, and use this numerical solution to create

simulated boundary data. A pseudo code for this algorithm is as follows:

function [t,g,h,u,f] = experiment(Solver,Udot,tspan,u0,F,D);

global XXX

u0_0 = evaluate(F,min(tspan));

u0 = [u0_0 , 0*XXX(1:end-1)]’;

[t,u] = feval(Solver,Udot,tspan,u0,[],D,F);

f = evaluate(F,t);

[t,g,h,f] = get_bcs(t,u,f,D);

%-------------------------
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function [t,g,h,f] = get_bcs(t,u,F,D);

global XXX

% this routine gets boundary data

% g = -D(u( 0.5 ,t)) * dudx( 0.5 ,t)

% h = u(1,t)

u = [NaN;u;NaN];

u(:,1) = feval(F,t) + 0*u(:,2); % Fix Dirichlet BCs

u(:,end+1) = u(:,end); % Fix Neumann BCs

dx = diff(XXX(1:2));

Du = evaluate(D,u(:,1));

dudx = ( u(:,2)-u(:,1) ) / dx ;

f = F;

g = -1 * Du .* dudx;

h = u(:,end);

The function experiment requires several inputs. A string specifying

which solver to use, the name of the file which computes the time derivative,

a time span for integration, and names of the coefficient function D and

the nonhomogenous Dirichlet condition function F are necessary. This code

first generates the initial profile. Then a call to a user specified ODE suite

solver is made with the feval command, taking as inputs the user defined

coefficients D and boundary condition F , which are external Matlab func-

tions. The resulting time solution, here produced on a time grid provided

by the user, is passed to the local sub-function get_bcs. This sub-function

first fixes the boundary values and then returns the appropriate boundary

measurements. Notice that the ‘missing’ boundary information is recon-

structed in the get_bcs code and is not computed explicitly by Matlab’s

time integration.
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3.4.4 Recovery pseudo code

In this section, we present pseudo code that utilizes the g(t) data and

the corresponding integral identity, 3.2. Code that incorporates g(t) and/or

h(t) data is easily constructed with only slight modification.

function D = Coeff_Inverse();

% Try to recover the coefficient D(u)

% in the model u_t = (D(u)u_x)_x

% given experimental output

[T,F,G,D0] = load Data.file;

% T = time F = forcing f(t)

% G = -D(u)u_x @ x=0 ; ie flux at x=0

% D0 = D(u(0,0)) ; initial coefficient

% Begin Recovery

D = D0; % Initial approximation

level = 1; % Initial time level

while (max(t) < Tmax)

% Initialize and set problem specs

% includes problem, ic’s, bc’s, methods

forward.info = ...

for strip = 1:level

[t,f,u,u_x,g] = solve_forward(forward.info,D);

end

deltag = G-g;

theta = ???; % assign theta (dual data)

DualD = ???; % assign approx dual D operator

% Set problem specs

% includes problem, ic’s, bc’s, methods

dual.info = ...
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for strip = 1:level

[phi_x] = solve_dual(dual.info,DualD);

end

for strip = 1:level

for region = 1:strip

% compute 2D region and basis element

[Omega,lambda] = Active_region(u,f);

% compute the integral over Omega

A(strip,region) = Int(u_x.*phi_x*lambda, Omega);

end

b(strip) = Int(deltag.*theta, t );

end

deltaD = A \ b;

D = D + deltaD;

% Adaptive control possible here

if (some condition is met)

level = level + 1;

end

end;

3.5 Adaptive control

In this section, we discuss several implementations that allowed the

nodal mesh to computed adaptively. Several adaptive schemes were im-

plemented, some more successfully than others. In the following, we must

keep in mind the integral identities upon which the scheme is based. We

compute the update to the coefficient by calculating

∆D =

∫ τ

0
∆gG∗(t) + ∆hH∗(t) dt

∫ τ

0

∫ L

0
λ(u)∂xu(x, t)∂xφ(x, t) dx dt

The value of the double integral is essentially the derivative of the map from

the input pair (g(t), h(t)) to the outputD. This term involves both ∂xu(x, t),

the space derivative of the forward solution, and ∂xφ, the derivative of
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an associated dual problem. We have control of several quantities in this

expression,

• The forcing f(t) in the direct problem,

• The data G∗(t) in the g dual problem,

• The data H∗(t) in the h dual problem.

We first considered enforcing a nodal basis a priori, which in turn al-

lowed computation of the corresponding nodal times. This had the benefit

that the forward solutions could be generated on this known time interval.

We also implemented a method where time breaks were imposed which al-

lowed the user to decide whether to apply the current update ∆D to the

recovered coefficient, or allow the algorithm to proceed unchecked until the

next time break. From experience gained with this method, an automatic

adaptive method was designed. The first observation was that the region

over which the integration take places grows as a function of time. The

function λ(u)∂xu(x, t)∂xφ(x, t) needed to be computed in this region. Re-

call that the magnitude of u(x, t) quickly diminishes from its value of f(t)

as a function of x, and that this decay is Gaussian and dependent on the

unknown coefficient. Evidently, the magnitude of ∂xu(x, t) is large for small

x, and decreases rapidly toward zero as x increases. The rate of this de-

crease depends on D. The adaptive scheme requires monitoring the solution

at a specific internal node, and halting time integration when the value at

this node becomes larger than u(0, ti) = f(ti), where ti is the initial time

of interest. In this way, the size of the region of integration can be con-

trolled. The magnitude of ∂xu(x, t), although dependent on the value of the

unknown coefficient, might be controlled through control of f(t), boundary
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forcing. The influence of this type of control remains to be studied with

this algorithm, although it has been considered in [20].

3.6 Experiments utilizing only the direct algorithm

Implementation of the direct problem in the Matlab environment al-

lowed many preliminary numerical experiments. Several of these initial

experiments are presented here. A variety of diffusion coefficients were

used to simulate the boundary data g(t) and h(t). The diffusion coefficient

assumed many functional forms, although here we present those based on

a family of Sine functions, a family of Arctan functions, and a family of

piecewise linear functions. Plots such as figure 3.1 are representative of this

series of experiments exploring the influence of coefficient variation on the

measurable output data. Although the domain of figure 3.1 is larger than

the [0, 1] domain of the later plots, all other aspects are similar. The larger

domain serves to reinforce the impression that there is some validity in as-

suming that boundary data might allow recovery of coefficient information.

All experiments presented in the following subsections were produced via

the same method. A time scale was first defined to be [0, 1] with boundary

forcing f(t) fixed at f(t) = t. The space discretization was accomplished

with the standard finite difference scheme. This reduces the problem to a

system of ODEs in time. A functional form of the coefficient was coded,

and both the system of ODEs and this coefficient were supplied to a Matlab

time integrator. The resulting numerical solution was used to compute the

simulation data g(t) and h(t).

Note that the range of f(t) = t corresponds in this case to the domain

of the supplied coefficient. Therefore, coefficients will be have as their
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Figure 3.1: Coefficient and corresponding boundary data

domain [fmin = 0, fmax = 1] and all time data will have domain [tmin =

0, tmax = 1], and are therefore equivalent in scale. Plots of coefficients

should be understood to be plotted against u, while the plots of boundary

data are plotted against t. This convention will allow us to easily compare

the coefficient and the corresponding data.

3.6.1 Coefficient taken from a Sine family

Several numerical experiments were conducted that utilized coefficients

taken from a family of Sine functions of the form

D(u) = α + β sin(ωt), (3.5)
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where α, β and ω are parameters. We first describe a series of ex-

periments that fix α and β and allow ω to take integer values from 1 to

20. Plots of the coefficient and corresponding data, such as 3.1, suggest

strongly that fluctuation in coefficient produces a noticeable signature in

the boundary data. This signature was most notable in the boundary flux

data, g(t) and to a lesser extent in the state data h(t). To test the hypoth-

esis that the g(t) data might contain information relating to perturbation

in the unknown coefficient, the effect of the mean coefficient was first re-

moved. In the constant coefficient case, the expected response curve of flux

data g(t) is proportional to
√
t. The constant coefficient effect was filtered

by subtracting from g(t) the signal
√
t. The modified data was then sub-

mitted to a simple correlation coefficient analysis. The covariance of the

filtered data and the a sequence of sine functions with frequency from 1 to

20 was computed, and the results presented in the waterfall plot 3.2. The

x-axis index represents the frequency of the sine function, while the y-axis

index refers to g(t) data produced with a diffusion coefficient of the indexed

frequency. The correlation matrix was 2 × 2, and the minimum plotted as

the magnitude in the z direction. Notice the high covariance measure when

the frequency of the sine function is coincident with the frequency of the

diffusion coefficient used to generate the data. Similar experiments were

conducted to test the h data. While these produced very small covariance

measures, this could easily be attributed to a failure to correctly filter the

artifact of the constant portion of the coefficient.

While the h data doesn’t appear to be related to the frequency of the

forcing, it does seem to contain information about the coefficient’s mean

contribution. A series of experiments were conducted which allowed the
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amplitude (β) of the coefficient from 3.5 to vary. Heuristicly, it appears

that breakthrough time is noticeably influenced by the mean of the diffusion

coefficient. We have defined breakthrough time, rather arbitrarily, to be

time for which the recorded h(t) data first became larger than 1e − 3. In

table (3.1), the breakthrough times are presented for several coefficients

with the same mean.

Coefficient D(u) Breakthrough Time

1+1/40 sin(2 π u) 0.0990
1+6/40 sin(2 π u) 0.0985
1+10/40 sin(2 π u) 0.0985
1+15/40 sin(2 π u) 0.0980

1+ 1/2 sin(1 u) 0.0990
1+ 1/2 sin(6 u) 0.0975
1+ 1/2 sin(10 u) 0.0965
1+ 1/2 sin(15 u) 0.0950

Table 3.1: Breakthrough times for various coefficients
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Figure 3.3: Data from Arctan with α = 11

3.6.2 Coefficients taken from an Arctan family

In this subsection, we present experiments in which the coefficient is

taken from the arctan family

D(u) = 1 +
1

2
arctan

(

α

(

u− 1

2

))

. (3.6)

The parameter α controls the derivative of this function. Notice that

the following plots record that the sudden change in coefficient is reflected

immediately in the g data, while the effect is increasing delayed in the h

data as the coefficient curve become steeper. Also, note that the effect of

the coefficient is more subtle in the h data.

In figure 3.3, breakthrough time of the h data is evident at t ≈ 0.5,

while the influence of the rapid change in the coefficient on the g data is

nearly instantaneous. In both of the figures 3.4 and 3.5, the breakthrough

time appear nearly identical, at t approximately 0.6. The breakthrough

time might be considered the time it takes the boundary information from

the left to propagate to the right boundary measurement. Since the same

linear in time boundary conditions were used in all the three experiments,
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Figure 3.4: Data from Arctan with α = 21

the boundary condition increase in time effects the diffusion coefficient,

which here increases the speed of the diffusion, and is evident in response

of the h data. After the breakthrough is achieved, the increase in the h

curve generated with α = 31 is less steep than that generated by taking

α = 41. Before the breakthrough time is reached, both coefficients are

effectively equal. After breakthrough is achieved, however, the α = 41 case

has a higher effective rate of diffusion than does the α = 31 experiment.

This translates to the more rapid response in the h data curve for α = 41

than in the data generated using α = 31, which in turn is steeper than that

of the α = 11 experiment.

Also, notice that g data appears slightly perturbed in the time/u region

corresponding to the most rapid increase in D. It appears that the g data

reacts to the jump in the coefficient while the h data does not.
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Figure 3.5: Data from Arctan with α = 41

3.6.3 Coefficients taken from a Piecewise Linear family

The coefficients used in the following experiments were taken from the

three parameter piecewise linear family

D(u) =

{

c + uβ u ≤ α

c + αβ u > α.
(3.7)

With α and β chosen so as keepD(u) positive. Two such series are presented

here. The first set fixes c = 1.5 and β = −1 while allowing α to vary from

0 to 1. These plots clearly indicate the breakthrough times in the h data.

They also reflect a slight reaction in the g data in the places where there is

a discontinuity in D′(u).

Notice that the h data curves appear nearly identical in figures 3.8 and

3.9, an indication that the h data might contain little coefficient information

after time approximately 0.75. It should also be noted the g data reacts

strongly to the coefficient in the sense that the g data curves in 3.6 through

3.13 at precisely the same point where the coefficient curves differ from one

another.
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Figure 3.6: Data from piecewise linear family with c = 1.5, β = −1 and α
= 0.25
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Figure 3.7: Data from piecewise linear family with c = 1.5, β = −1 and α
= 0.5
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Figure 3.8: Data from piecewise linear family with c = 1.5, β = −1 and α
= 0.75
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Figure 3.9: Data from piecewise linear family with c = 1.5, β = −1 and α
= 1
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Figure 3.10: Data from piecewise linear family with c = 0.5, β = 1 and α
= 0.25

Similarly, several plots from experiments using parameters c = 0.5, β =

1 and α from 0 to 1 also indicate that there is little coefficient information

in the h data for t larger than 0.5. The diffusion coefficient in this series is

smaller than that of the previous series, which causes the h data to respond

more slowly to coefficent modifications.

Figure 3.14 plots the 2 norm of the consecutive terms in the h(tk)

time series, generated over range of α values. The plot indicates that the

coefficient whose initial value is c = 1.5 allows the h data to converge more

rapidly in the 2 norm.

Although these experiments were extremely simple, they did help de-

velop intuition that proved useful in the study of the inverse problem. These

results provided a direction and motivation for much of the later work.

They provided a excellent test for the numerical solution of the direct prob-

lem under a wide range of coefficients. These experiments also provided a

benchmark for the data behavior as a function of diffusion coefficient.
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Figure 3.11: Data from piecewise linear family with c = 0.5, β = 1 and α
= 0.5
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Figure 3.12: Data from piecewise linear family with c = 0.5, β = 1 and α
= 0.75
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Figure 3.13: Data from piecewise linear family with c = 0.5, β = 1 and α
= 1
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3.7 Experiments Utilizing Full Recovery Algorithm

In this section, we discuss several experiments which used the full re-

covery algorithm. In all cases, the data used in recovery was generated

numerically. This allowed a direct comparison of the ‘true’ coefficient with

the approximation generated by the algorithm. The following areas were

explored:

• Use of g, h and weighted (g, h) pair

• Dimension of uniform nodal basis

• Non uniform nodal basis

• Perturbed nodal basis

• Dependence of solution on time

• Iteration

• Diagonal depth in linear system

3.7.1 Data selection and weighting

In its original form, the integral identity contains both the g and the h

data. The high correlation between the g data and the coefficient D made

clear the possibility that the g might contain more qualitative information

than the h data. A series of experiments in which a weighted average of

the two data types was conducted to try to quantify this.
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3.7.2 Dual data selection

There are many choices for dual data in the problem. Choosing G∗(t) =

∆g(t) and H∗(t) = ∆h(t) makes the numerator into a L2 norm. A choice

of G∗(t) = γ1sgn(∆g) and H∗(t) = γ2sgn(∆h) makes this a weighted L1

norm. There are many possibilities, and several numerical experiments were

performed to gain some insight into what this choice might imply.

In an attempt to isolate the effect data used in the dual problem, the

linear function

D(u) = 1 +
1

4
u

was used to generate the initial data. This function was chosen to reduce

the error induced by approximating the dual problem. We also solved this

problem for a single free node.

The following experiments imply that the choice of dual data is impor-

tant, and that the choice of G∗(t) = ∆g and H∗(t) = γ apparently allows

a more accurate recovery of the tested coefficient. In practice, this was the

combination of data that was quite effective when recovering a wide range

of coefficients.

With G∗ fixed at zero, modifications of the state data H∗ were consid-

ered. The dual data was constructed as a linear combination of the data

types in two parameters. Using this data, the coefficient D was recovered

over a range of parameter values. The data had the form:

H∗(t) = (1 − λ)∆h(t) + λγ2

where λ is a number in [0, 1] and γ2 held constant. We first present those

cases where γ2 was fixed at 1, and allow λ to vary.
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Figure 3.15: Error in λ parameter space for H∗(t) data
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Figure 3.15 indicates that a choice of dual data which is weighted to-

ward a constant is preferable. There appears to be a minimum in the error

measure of coefficient recovery around λ = 0.2, which corresponding to well

defined minima in the error of ∆g. Recall that g data is not being used

in this experiment, although the plot of the ∆g error seems to resemble

the plot of error in ∆h. Both of the errors in the observable quantities

approach 1e − 8, which is close to the expected error of the numerical in-

tegration scheme used. Now we fix λ at one and solve the problem with γ2

ranging from 10 to 100 by increments of 10. These results are presented in

3.16 in the same format as the preceding plots. This series seems to indicate

that the choice of constant γ2 for values less then 70 appear to have little

effect in the error measures. For values of γ2 larger then 70, however, the

errors seem to stabilize. However, they remain at the same average level of

the smaller parameter values.

Fixing H∗ = 0, modifications of the flux data G∗(t) were then consid-

ered. The experiments were performed by constructing a linear combina-

tion of the data types via two parameters, and then recover and record the

approximate coefficient as these parameters were independently traversed.

The data had the form:

G∗(t) = (1 − λ)∆g(t) + λγ1

where λ is a number in [0, 1] and γ1 is a constant. We first present those

cases where γ1 was fixed at 1 and λ was allowed to vary.

Figure 3.17 is a logy plot of L2 error in D(u), ∆g and ∆h, respectively.

This series of plots clearly suggest that setting G∗(t) = ∆g(t) will lead to

a minimum error in D(u), ∆g and ∆h. This error also appears to increase

smoothly as the parameter λ transitions from 0 to 1.
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Figure 3.18: Error in γ1 parameter space

Now fix λ at one and solve the problem with γ2 ranging from 10 to 100

by increments of 10.

Figure 3.18 is a plot of the L2 error of D(u), ∆g and ∆h, respectively.

There is a consecutive order of magnitude difference in these plots, although

all three appear qualitatively similar. While not definitive, it appears that

error tends to decrease at the constant γ is increased, although this ef-

fect might be an indication of the order of the approximations used. The

measures here are quite small.

3.7.3 Dimension of uniform nodal basis

The numerical recovery algorithm uses a nodal basis to represent the

recovered algorithm. There are many possible ways in which to choose this
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basis, but here we explore the coefficient on a uniform grid. Experiments

were performed to locate an optimal uniform grid spacing. The approxi-

mation to the coefficient was computed on a grid of n nodes. Here the non

iterative algorithm was applied. Since the true coefficient was known, the

L2 error of the recovered coefficient and true coefficient was measured.

Figure 3.19 displays the effect of refining the outer mesh by increasing

M, the number of nodes in order to identify the coefficient

D(u) = 1 + u, 0 < u < 1,

The non iterative algorithm was applied in this particular experiment. The

results for M = 2, 5 and 9 are shown in addition to a plot of the L2 − error

versus M. The error cascade is apparent in the plots corresponding toM = 5

and 9, as the iteration in each of these individual identifications proceeds.

The last subplot summarizes this series, as it shows the error decreasing

with increasing M up to about M = 5, at which point the error begins

again to increase. This result is in qualitative agreement with (2.16). We

also notice that in the last figures in 3.19 an overshoot/undershoot feature.

Before this point, there appears to be a systematic bias to underestimate

the coefficient. This effect will be discussed at a later point.

The series of plots in figure 3.20 represent the approximated coefficient

as well as the true coefficient

D(u) = 1/2 + 2u− u2

used to generate the observed data. The iterative algorithm was used. In

addition, both the (f, g) and (f, h) data pairs were used, which results in

the very precise recovery of the unknown coefficient. Notice that the degree
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Figure 3.20: Uniform Nodal Basis with g+h data

of the nodal basis still plays a role, as the last plot in figure 3.20 begins

to show some oscillatory behavior. This overshoot/undershoot typically

manifests when the degree of the approximation space becomes too large.

The nodal values of the approximate coefficient, marked with open cir-

cles, appears to closely correspond to the ‘true’ coefficient. Clearly there

is a breakdown in the approximation as the number of nodes is allowed

increase. While the more advanced algorithm was able to capture a more

difficult coefficient, it still was unable to continue to resolve the coefficient

beyond some critical level. In this case, the minimum error occurs around

dimension 7, with a slight increase of error on either side. It is interesting

to note that in both plots of error, the error rapidly becomes worse as the

optimal dimension is exceeded. The might indicate that any adaptive algo-

rithm might make use of the feature, either by constructing a suboptimal

grid that stops before the optimal grid, or be able to recognize the overshoot

undershoot error and reduce the dimension.
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3.8 Local Nodal Refinement

A coefficient basis of the form

D(u) =











1 u < 1/4

2(u− 1/2) 1/4 < u < 3/4

2 u > 3/4.

was used in this series to generate observation data. This piecewise coeffi-

cient allows us to examine the effect of local refinement near a feature. For

example, this coefficient might represent the best nodal basis of a differen-

tiable function, such as a function from the Arctan family. The experiment

could then be interpreted as testing recovery on structured refinement near

a region of rapid coefficient change. For the given coefficient, there are two

critical nodes, one at u = 1/4 and the other at u = 3/4. Here we present

only those concerning refinement of the nodal basis after u = 1/2. Four runs

were performed in which the nodal breaks were prescribed. The following

nodal values were used

run 1 = [ .25 .50 1.0 ];

run 2 = [ .25 .50 .75 1.0];

run 3 = [ .25 .50 .625 .75 .875 1.0];

run 4 = [ .25 .50 .5625 .625 .6875 .75 .8125 .875 .9375 1.0];

The figure 3.21 presents the true coefficient with recovered approxi-

mation generated by the algorithm on the nodal basis given above. Run 2,

represented with the solid line plot, uses the true nodal basis for the optimal

recovery if no approximations were necessary, and would correspond to the

algorithmic coefficient D̃(u), which would be the true piecewise linear co-

efficient. We make several approximations, however. The dashed plot, the

coefficient recovered using the nodal basis of assigned to run 1, represents a

recovery in which the node at u = 3/4 is omitted. While this recovery uses
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Figure 3.21: Local Grid refinement

fewer points then does the first run, the overall recovery appears, at least

visually, to be slightly better then the recovery of run 2. Run 1 captures

the rapid change in the coefficient in what appears to be an average. Again,

the overshoot undershoot effect is seen in the most highly refined experi-

ment, run 4. Also notice the plots in both run 2 and run 3 underestimate

the true coefficient.

3.9 Minimum Resolution

In the experiments which the dimension of the optimal uniform nodal

basis, it became clear that the choice of too large a basis leads to over-

shoot/undershoot effects. In this section, we discuss a series of experiments

designed to explore the minimum resolution of a nodal basis.

Once again we build our observable data with

D(u) = 1 + u.
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over the coefficient range from 0 to 1. We then apply the adaptive algorithm

and produce a nodal basis of

[ 0.0, 0.1000, 0.2123, 0.3547, 0.5162, 0.6877, 0.8570, 1.0 ].

The difference of these nodes were computed, and then multiplied by a

scaling factor ranging from 36% to 120%. The resulting vector was cumula-

tively summed and submitted to the non-adaptive recovery algorithm. The

plot 3.22 provides a summary of these computer runs. The x axis in this

figure indicates the relative scaling of the experimental basis to the orig-

inal basis. The experiments were conducted over the full range of scaled

basis nodes, resulting in maximum time intervals ranging from 0.36 to 1.20

time units. Those coefficients whose intervals exceeded [0, 1] were linearly

interpolated to [0, 1]. The square error was computed over the domain, and

then normalized based on the measure of the domain. As expected, the

linear coefficient was recovered with increasing accuracy as the grid became

increasingly coarse. Notice that the error begins to decrease rapidly from

its maximum of approximately 1.5 once the mesh scaling moves above 60%

of the baseline mesh scale. This could be interpreted to mean that there

is insufficient information available for accurate recovery on the fine grid.

Once the error contributions in the integral identity are balanced by the sig-

nificant information, the recovery algorithm begins to perform well. Also

of interest is the observation that the baseline nodal basis appears to per-

form well in this series. The error increases noticeably as the grid becomes

refined, while the error for coarser grids appear to be approaching some

asymptotic limit. Although the nodal basis is non uniform, grid refine-

ment shows features consistent with refinement of the uniform nodal grid.
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The main feature of this experiment is the indication that once a minimum

resolution is reached, further refinement of this mesh will not improve the

recovery. This series also suggests that the adaptive grid selection appears

to work well in this linear coefficient case.

3.10 Width of Data strips

In this section, we consider the numeric structure of the matrix A.

Recall that iterative method involves a lower triangular matrix, entries of

which are integrals over the active coefficient range. As we uniformly re-

fine the width of the data strips, this matrix increases in dimension. Here a

uniform time nodal basis is used over [0, 1], with ∆t = 2−6. This choice gen-

erates a 64× 64 matrix. We consider the main diagonal, a vector of length

64, and 5 subdiagonals, the shortest of which contains 58 entries. In figure

3.10, we plot these 6 vectors. The horizontal axis indicates the time node
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index for the matrix entry, while the vertical axis is the magnitude of the

entry. Notice that the main diagonal, plotted with the thickest line, appears

to be much smoother than the other diagonals. This indicates that the di-

agonal entry, while not dominate in magnitude, shows little numeric error

from onset. The subdiagonal terms initially show a perturbation around

what might be considered the actual value. There are many contributions

to the error in these calculations, but figure 3.10 suggests that these errors

become less influential as the width of the strip increases and the algorithm

subsequently becomes more numerically robust. As expected, the index

at which the perturbations appear to die occur at later times as we move

farther from the main diagonal. For example, the entries in the first subdi-

agonal become more stable after index 11, while the entries taken from the

3rd subdiagonal require almost twice as many time nodes to stablize. The

size of both the active coefficient region and the magnitude of the integrand

rapidly decrease as we move more deeply into the interior of the region. The

first subdiagonal has the largest magnitude, a feature attributable to the

fact that the region of activity is roughly trapezoidal, as opposed to the

more triangular region corresponding to main diagonal entry.

3.11 Iteration

In this section, we compare the non iterative methods described in

the earlier chapter with the iterative method in this chapter. Here we

demonstrate that suppressing the iteration leads to cascading errors in the

sequentially computed nodal values dk as shown in figure 3.24. The coeffi-

cient shown in this figure,

D(u) = 2 − arctan [6(u− 1/2)] , 0 < u < 1, (3.8)
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was recovered in two ways. In the first, the non-iterative algorithm ap-

plied to the data {f, g} to produce the dashed line plot, while the iterative

algorithm was applied to produce the solid line plot. The data was gen-

erated by solving the direct problem (2.1) using a functional form of the

coefficient (3.8) on a mesh of 70 nodes with the Matlab solver ode15s. The

flux, g(t), was then computed using a difference formula. This flux data

was submitted to the recovery algorithms, both which used a 40 node mesh

and ode15s to compute solutions to the direct and adjoint problem. It is

clear from the figure that the errors in non-iterated nodal values for D(u)

accumulate as the values are sequentially determined. We point out that

determining dk we are obliged to integrate over the approximately trian-

gular region {0 < x < xk(t), Tk−1 < t < Tk}. However, the algorithm

must numerically approximate x0(tj) on the inner mesh, and this leads to

a systematic overestimation of the value of Akk which, in turn leads to a

correction term that is too small. The fact that D is a decreasing function

of u, as given in equation (3.8), leads to a negative ∆g(t) and a negative

correction, bk/Akk. This is evident in the dashed-line plot of Figure 3.24.

The fact that Akk is too large causes the negative correction to be too small

so that the graph of the computed polygonal function lies above the graph

of the true coefficient. Since the integrals for Akk and bk involve only the in-

terval [Tk−1, Tk], each identified value, dk, can do nothing to diminish errors

in previously identified values, hence the identification error accumulates.

This suggests that iteration might prove useful. The solid line plot

in Figure 3.24 shows the result of identifying the coefficient 3.8) but now

iterating as follows. We use the identity (2.7) on Q1 together with the

known value, d0, to identify d
(1)
1 . Here the known value, d0, is used to
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compute u2(x, t), g2(t) and φ̂(x, t). Next we use the identity (2.7) on Q1

and Q2 together with known values, d0, d
(1)
1 to identify d

(2)
1 and d

(1)
2 . In the

next step, we use the identity (2.7) on Q1, Q2 and Q3 together with known

values, d0, d
(2)
1 and d

(1)
2 to identify d

(3)
1 , d

(2)
2 and d

(1)
3 .At each stage, the known

nodal values are used to compute u2(x, t), g2(t) and φ̂(x, t). Continuing in

this way, we eventually obtain d
(1)
M , d

(2)
M−1, ..., d

(M)
1 . It is evident from the

solid line plot in Figure 3.24 that as a result of the iteration, the errors no

longer exhibit the cumulative character seen in the dashed line plot, where

iteration was not applied. Here the coefficient

D(u) = 1 +
1

2
sin(2πu), 0 < u < 1, (3.9)

was used to generate flux data as in the previous example, although here

the Matlab solver ode23s was used. This data was passed to the itera-

tive recovery algorithm, the results of which are plotted in figure 3.25 The

qualitative agreement between the computed and true coefficient appears

82



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

U

D
(U

)

D(u) = soln = 1.1 +  sin(10 u)

Iteration
True

Figure 3.26: Recovery of D(u) = 1.1 + sin(10u)

reasonable in this figure. Notice that the approximation initially lies above

the plot of the true coefficient, denoted by the dotted line, in regions where

D is increasing. This is in agreement with the analysis of the previous ex-

periment. The value at the last nodal is not iterated in this scheme, and is

visibly less accurate than the computed values on other nodes.

The algorithm is able to capture a variety of coefficient types. In figure

3.11, uniform time breaks induce a uniform nodal basis under linear forcing.

The sine function

D(u) = 1.1 + sin(10u)

is captured quite well. Although the nodal basis used was uniform, the

algorithm identified both the amplitude and the frequency of the coefficient

quite accurately. Again, the recovery is not iterated in the last interval from

u = [0.8, 1] and as a consequence, is less accurate.
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3.12 Noisy data

In this section, we explore the effect that a noisy data set has on the

recovery process.

Figure 3.27 represents coefficient recovery in which the data contained

induced error. A relative uniform random error of 10% was induced in

the flux data, and the iterative algorithm was applied. The flux data used

for recovery is plotted in figure 3.28. The recovered coefficient, plotted in

Figure 3.27 appears to capture the general structure of the true coefficient.

No preprocessing was applied to this data, which was possible since the
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error had mean zero. The integration of the g data in (2.13) allows much

of this error to cancel. This is a significant observation. Often, even slight

error will cause the parameter estimation difficulty [20]. In practice, noisy

data is often fit with a spline, with the subsequent smooth fit replacing

the noisy measurement. In figure 3.29, a 15% uniform random error was

introduced. While noticeably worse than the previous recovery, the main

features of the coefficient were still successfully identified.
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Chapter 4

TWO PARAMETER IDENTIFICATION

Consider the quasilinear conduction diffusion equation given by

C(h)∂th(z, t) − ∂z(K(h)(∂zh(z, t) − cos(ϑ))) =S(z, t), in QT

h(z, 0) =0, 0 < z < L, (4.1)

∂zh(0, t) − 1 = 0 h(L, t) =g(t) 0 < t < T.

Although this equation can represent many physical systems, we consider

it here to be the governing equation for ground water flow through porous

media. In this application, Equation (4.1) is referred to as the one dimen-

sional Richards equation in capacity conductivity form. The variable h(z, t)

represents capillary pressure head, the angle ϑ indicates flow declination,

and S(z, t) introduces a source/sink term. The function C(h) represents

the water capacity function of the soil while K(h) represents the hydraulic

conductivity function. In our application, these functions will be considered

unknown. In this chapter we develop theory which allows the identification

of these unknown quantities using observable boundary measurements, un-

der suitable restrictions.
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4.1 Phase 1 problem

Consider a vertical soil column which is completely saturated and then

allowed to drain under gravity. If there are no sources or sinks, no flow

across the top of the column and if the bottom of the column is at the

water table, the capillary pressure head h(z, t) can be shown to satisfy

C(h)∂th(z, t) = ∂z(K(h)(∂zh(z, t) − 1)) for (z, t) ∈ QT

h(z, 0) = 0 for 0 < z < L, (4.2)

∂zh(0, t) − 1 = 0 h(L, t) = 0 for 0 < t < T

where QT = {(z, t) : 0 < z < L, 0 < t < T}. The column is assumed to

be of length L with z = 0 at the top of the column and z = L > 0 at the

bottom. Here ϑ was taken to be the angle from the positive z axis.

Problem (4.2) will be referred to as the Phase 1 direct problem. For

suitable coefficients C and K this direct problem has a unique smooth

solution [8, 22]. The solution tends toward the steady state equal to h(z) =

z −L for 0 < z < L as t tends to infinity. While this state is never reached

in finite time, for any choice of ǫ, a time T can be found such that h(z, T ) is

within ǫ of the steady state. For (z, t) in the region QT , the range of h(z, t)

is [−L + ǫ, 0] and not the interval (−L, 0]. We, however, will take T to be

a sufficiently large fixed constant so as to allow the head values h(z, t) to

vary between 0 and −L and omit reference to ǫ in future discussions.

Coefficients C and K are admissible if they satisfy

C ∈ C(h) and C♭ ≤ C(h) ≤ C♯ for h ∈ J, (4.3)

|K(h1) −K(h2)| ≤ κ|h1 − h2| and K♭ ≤ K(h) ≤ K♯ for h1, h2 ∈ J, (4.4)
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where J = [h(0, T ), h(0, 0)] and C♭, C♯, K♭, K♯ and κ are positive constants.

Then any polygonal function bounded away from zero satisfies these con-

ditions, and the difference of two such functions has at most finitely many

zeros for h in J. For each pair of admissible coefficients, the direct problem

(4.2) has a unique solution h(z, t).

Restricting our discussion to admissible coefficients, we seek to recover

coefficients C and K from measured output. We recall that simultaneous

control of h and ∂zh at a single point is not possible. However, one can be

controlled and the other observed. In equation (4.2), ∂zh(0, t) and h(L, t)

are the controlled quantities, allowing the observation of h(0, t) = p(t) and

∂z(h(L, t))−1 = q(t). Although several outputs are experimentally feasible,

we restrict to these observations made on the boundary.

We define the mappings

Φ : W (J) −→ L2[0, T ]
Φ[C,K] = h(z, t)

(4.5)

with W (J) representing the class of admissible coefficient pairs. Evidently,

Φ is the solution map from the input coefficients [C,K] to h. We also define

the projection map Γ, which assigns to each solution the pair of accessible

output measurements p and q. We denote this by Γ · Φ[C,K] = (p, q). The

solution of the inverse problem will amount to the inversion of this map.

We also write Γ0 ·Φ[C,K] = p and ΓL ·Φ[C,K] = q, denoting the evaluation

of this map at z = 0 and z = L, respectively.

We choose in this paper to explore the map Φ using adjoint techniques.

First, note that we may rewrite several term in (4.2) in a form that will

later prove useful. Let

a(h(z, t)) =

∫ h(z,t)

0

C(s) ds and b(h(z, t)) =

∫ h(z,t)

0

K(s) ds.
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Notice that C(h)∂th = ∂ta(h) and ∂z(K(h)∂zh)) = ∂zzb(h).

We also recall a maximum principle for the heat equation.

The Maximum Principle Suppose that w(z, t) ∈ C2(QT ) ∩ C(QT ).

Let M and m denote, respectively, the maximum and minimum of w on the

parabolic boundary of QT . Then,

• if ∂tw −∇2w ≤ 0 in QT , then w ≤M in QT

• if ∂tw −∇2w ≥ 0 in QT , then w ≥ m in QT

• if ∂tw −∇2w = 0 in QT , then m ≤ w ≤M in QT

Lemma 4.1.1. For admissible coefficients C(h) and K(h), let h = Φ[C,K],

be a solution to (4.2) with q = ΓL · Φ[C,K]. Then for each t, 0 < t < T,

q(t) ∈ C[0, T ) q(0) = −K(0) and q(t) < 0

Proof. The smoothness of the solution implies that q(t) is continuous. Ini-

tial and boundary conditions immediately imply that q(0) = −K(0).

We now show that q(t) < 0 through an adjoint method. For q =

ΓL · Φ[C,K] and for an arbitrary smooth function φ(z, t), we write

∫∫

QT

[∂ta(h) − ∂z(K(h)(∂zh(z, t) − 1)] ∂zφ dz dt = 0

Integration by parts yields

∫∫

QT

∂ta(h) ∂zφ dz dt

=

∫ L

0

a(h)∂zφ

∣

∣

∣

∣

t=T

t=0

dz −
∫∫

QT

a(h)∂tzφ dz dt

=

∫ L

0

a(h)∂zφ

∣

∣

∣

∣

t=T

t=0

dz −
∫ T

0

a(h)∂tφ

∣

∣

∣

∣

z=L

z=0

dt

+

∫∫

QT

C(h)∂zh∂tφ dz dt
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and

∫∫

QT

[∂z(K(h)(∂zh(z, t) − 1))] ∂zφ] dz dt

=

∫ T

0

(K(h)(∂zh(z, t) − 1)) ∂zφ

∣

∣

∣

∣

z=L

z=0

dt

−
∫∫

QT

(K(h)(∂zh(z, t) − 1)) ∂zzφ dz dt.

So, we have the identity

∫∫

QT

[(∂zh− 1){C(h)∂tφ+K(h)∂zzφ }+C(h)∂tφ] dz dt

=

∫ T

0

a(h)∂tφ+K(h)(∂zh− 1)∂zφ

∣

∣

∣

∣

z=L

z=0

dt−
∫ L

0

a(h)∂zφ

∣

∣

∣

∣

t=T

t=0

dz. (4.6)

Notice that the initial and boundary conditions of the direct problem make

a(h(z, 0)) =

∫ h(z,0)

0

C(s) ds = 0,

a(h(L, t)) =

∫ h(L,t)

0

C(s) ds = 0 and

∂zh(0, t) − 1 = 0.

Applying these facts to (4.6) results in

∫∫

QT

[(∂zh− 1){C(h)∂tφ+K(h)∂zzφ }+C(h)∂tφ] dz dt

=

∫ T

0

−a(h(0, t))∂tφ(0, t) + q(t)∂zφ(L, t) −
∫ L

0

a(h(z, T )∂zφ(z, T ) dz,

(4.7)

where K(h(L, t))(∂zh(L, t) − 1) has been replaced with the measurement

q(t). We now introduce an adjoint problem that will reduce (4.7) further.

Assume φ(z, t) solves the adjoint problem

C(h)∂tφ(z, t) +K(h)∂zzφ(z, t) = 0 in QT ,

φ(z, T ) = 0 0 < z < L,

φ(0, t) = 0 ∂zφ(L, t) = θ(t) 0 < t < T.
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Then the initial condition implies that ∂zφ(z, T ) = 0 and the boundary

condition implies that ∂tφ(0, t) = 0.

Equation (4.6) finally collapses to the simple integral identity

∫ T

0

q(t)θ(t)dt =

∫∫

QT

C(h)∂tφ(z, t) dz dt. (4.8)

Now notice that the right side can be written

∫∫

QT

C(h)∂tφ(z, t) dz dt =C(h̃)

∫ L

0

φ(z, s)
∣

∣

∣

T

0
ds dz

=C(h̃)

∫ L

0

φ(z, 0) dz,

for some h̃ = h(z̃, t̃) with (z̃, t̃) ∈ QT . Since C is strictly positive and φ(z, 0)

is strictly negative almost everywhere in QT , this term is strictly negative.

Evidently, the integral identity implies that q(t) < 0 on (0, T ).

We now develop an integral identity relating the input pair (C,K) to

the output pair (p, q). We begin with two lemmas that will be essential in

the analysis of the inverse problem.

Lemma 4.1.2. For admissible coefficients C(h) and K(h), let h = Φ[C,K]

and q = ΓL · Φ[C,K]. Then ∂zh(z, t) − 1 < 0 almost everywhere in QT .

Proof. For h = Φ[C,K] and arbitrary smooth function φ(z, t), the integral

identity (4.8) holds. Suppose φ(z, t) now solves the adjoint problem

C(h)∂tφ(z, t) +K(h)∂zzφ(z, t) = F (z, t) in QT ,

φ(z, T ) = 0, 0 < z < L,

φ(0, t) = 0, φ(L, t) = 0, 0 < t < T.
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Since a(h(z, 0)) = 0, a(h(L, t)) = 0 and ∂zh(0, t) − 1 = 0, and both

∂tφ(0, t) = 0 and ∂zφ(z, T ) = 0, identity (4.6) collapses to

∫∫

QT

(∂zh− 1)F (z, t) dz dt

= −
∫∫

QT

C(h)∂tφ dz dt+

∫ T

0

q(t)∂zφ(L, t) dt.

We consider each term independently. Choosing the function F (z, t) to be

nonnegative in QT , the maximum priciple ensures that the solution φ(z, t)

is also nonnegative in QT . By an argument similar to the one made in the

previous lemma, it follows from the reduced integral identity that ∂zh(z, t)−

1 < 0 almost everywhere in QT .

Lemma 4.1.3. For admissible coefficients C(h) and K(h), let h = Φ[C,K]

and p = Γ0Φ[C,K]. Then ∂th(z, t) < 0 almost everywhwere in QT .

Proof. Let h = Φ[C,K] and φ(z, t) be an arbitrary smooth function. Con-

sider

∫∫

QT

[C(h)∂th− ∂z(K(h)(∂zh− 1))] ∂tφ dz dt = 0.

Integration by parts implies

−
∫∫

QT

∂z(K(h)(∂zh− 1))∂tφ dz dt

=

∫∫

QT

K(h)(∂zh− 1)∂ztφ dzdt

−
∫ T

0

K(h)(∂zh− 1)∂tφ
∣

∣

∣

L

0
dt

= −
∫∫

QT

∂t [K(h)(∂zh− 1)] ∂zφ dz dt

+

∫ L

0

K(h)(∂zh− 1)∂zφ
∣

∣

∣

T

0
dz

−
∫ T

0

K(h)(∂zh− 1)∂tφ
∣

∣

∣

L

0
dt.
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Now,

−
∫∫

QT

∂t [K(h)(∂zh− 1)] ∂zφ dz dt

= −
∫∫

QT

∂ztb(h)∂zφ dz dt+

∫∫

QT

∂tK(h)∂zφ dz dt

=

∫∫

QT

∂tb(h)∂zzφ dz dt−
∫ T

0

∂tb(h)∂zφ
∣

∣

∣

L

0
dt

+

∫∫

QT

K ′(h)∂th∂tφdz dt.

Putting this together, we get

∫∫

QT

[

C(h)∂tφ+K(h)∂zzφ+K ′(h)∂zφ
]

∂th dz dt

=

∫ T

0

K(h)(∂zh− 1)∂tφ
∣

∣

∣

L

0
dt (4.9)

−
∫ L

0

K(h)(∂zh− 1)∂zφ
∣

∣

∣

T

0
dz (4.10)

+

∫ T

0

K(h)∂th∂zφ
∣

∣

∣

L

0
dz. (4.11)

Since K(h)(∂zh− 1) = q(t) and ∂zh(0, t) − 1 = 0, (4.9) becomes

∫ T

0

K(h)(∂zh− 1)∂tφ
∣

∣

∣

L

0
dt =

∫ T

0

q(t)∂tφ(L, t) dt

if we make φ(L, T ) = 0. Taking φ(z, T ) = 0 implies that ∂zφ(z, T ) = 0.

Combining this with the fact that h(z, 0) = 0 implies ∂zh(z, 0) = 0, (4.10)

may be written

−
∫ L

0

K(h)(∂zh− 1)∂zφ
∣

∣

∣

T

0
dz

=

∫ L

0

K(h)(∂zh− 1)∂zφ
∣

∣

∣

0
dz

= K(0)

∫ L

0

∂zφ(z, 0) dz

= K(0) [φ(L, 0) − φ(0, 0)] .
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Finally, if we set both ∂zφ(0, t) = 0 and ∂zφ(L, t) = 0, then (4.11) will

vanish. So, if we allow φ(z, t) to satisfy the adjoint problem

C(h)∂tφ+K(h)∂zzφ+K ′(h)∂zφ = F (z, t) in QT ,

φ(z, T ) = 0, 0 < z < L,

∂zφ(0, t) = 0, ∂zφ(L, t) = 0 0 < t < T,

then we may write

∫∫

QT

∂thF (z, t) dz dt = K(0)[φ(L, 0) − φ(0, 0)] +

∫ t

0

q(t)∂tφ(L, t).

This can be rewritten as

∫∫

QT

∂thF (z, t) dz dt =K(0) [φ(L, 0) − φ(0, 0)] + q(t̃)

∫ t

0

∂tφ(L, t)dt

=K(0) [φ(L, 0) − φ(0, 0)] + q(t̃)φ(L, t)
∣

∣

∣

T

0

=K(0) [φ(L, 0) − φ(0, 0)] − q(t̃)φ(L, 0),

where 0 < t̃ < t. Restricting F (z, t) to be nonnegative but otherwise ar-

bitrary, the maximum principle will ensure that φ(z, 0) will be negative

almost everywhere. It has been shown that q(t) < 0. Since K(0) is nonneg-

ative, the entire right side is negative if we force φ(L, 0) − φ(0, 0) negative

by adjusting F. Evidently, ∂th must be nonnegative almost everywhere in

QT .

Lemma 4.1.4. For admissible coefficients C(h) and K(h), let h = Φ[C,K].

Then for each t, 0 < t < T,

z − L < h(z, t) < 0 and h(0, τ) < h(z, t) < 0

for 0 < z < L and 0 < t < τ.
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Proof. Let h(z, t) = Φ[C,K]. Define u(z, t) =: h(z, t) − (z − L). Then

consider the transformed problem

C(h)∂tu− ∂z(K(h)∂zu = 0 in QT ,

u(z, T ) = 0, 0 < z < L,

∂zu(0, t) = 0, u(L, t) = 0 0 < t < T,

By the maximum-minimum principle, 0 < u(z, t) < L − z for each t in

(0, T ], which in turn implies z − L < h(z, t) < 0 in QT . Since ∂zh(0, t) = 1,

the maximum must occur on the boundary z = 0. Therefore, h(0, t) <

h(z, t) < 0 for all (z, t) in QT .

Lemma 4.1.5. For admissible coefficients C(h) and K(h), let p = Γ0 ·

Φ[C,K]. Then

p ∈ C1[0, T ], p(0) = 0 and p′(t) < 0

Proof. The smoothness of p follows from the smoothness of the solution, as

does the consistency at t = 0. To show that p′(t) is negative, we choose a

smooth function φ(z, t) which satisfies the adjoint problem

C(h)∂tφ+K(h)∂zzφ+K ′(h)∂zφ = 0 in QT

φ(z, T ) = 0 0 < z < L

∂zφ(0, t) = θ(t) φ(L, t) = 0 0 < t < T.

Then the earlier equation identity reduces to

K(0)

∫ L

0

∂zφ(z, 0) dz = −
∫ T

0

K(h(0, t)) ∂th(0, t)θ(t) dt

The fundamental theorem of calculus coupled with the boundary conditions

allows us to write

K(0)φ(0, 0) =

∫ T

0

K(h(0, t))p′(t)θ(t) dt.
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Now select θ(t) to be negative for t in [0, T ) and θ(T ) = 0. The extended

maximum principle implies that φ assumes its minimum at z = 0, and that

φ(z, t) is strictly positive in the interior QT . The positivity of K then makes

clear that the left side is strictly positive. Evidently, our choice of θ allows

us to conclude that p′(t) must be negative for 0 < t < T.

Before we begin the proof of the main result, we adopt the notations

ai(h) :=

∫ h(z,t)

0

Ci(s) ds and bi(h) :=

∫ h(z,t)

0

Ki(s) ds,

which will streamline the presentation. We are able to make several obser-

vations that will prove useful. Notice that

a1(h1) − a1(h2) =

∫ h1

h2

C1(s) ds

=

∫ 1

0

C1(λh1 + (1 − λ)h2) dλ (h1 − h2)

= C1(h̃(z, t))(h1 − h2)

= C∗

1(z, t) (h1 − h2)

for some h̃ between h1 and h2. Similarly,

b1(h1) − b1(h2) =

∫ h1

h2

K1(s) ds

=

∫ 1

0

K1(λh1 + (1 − λ)h2) dλ (h1 − h2)

= K1(ĥ(z, t))(h1 − h2)

= K∗

1 (h1 − h2)

and

K1(h1) −K1(h2) =

∫ h1

h2

K ′

1(s) ds

=

∫ 1

0

K ′

1(λh1 + (1 − λ)h2) dλ(h1 − h2)

= K
′
∗

1 (h1 − h2).
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We remark that C∗

1 , K
∗

1 and K
′
∗

1 all take their values at independent and

indeterminant values of h. Also,

∂t[a2(h2) − a1(h2)] = ∂t

∫ h2

0

C2(s) − C1(s)ds

= [C2(h2) − C1(h2)] ∂th2

∂z[b2(h2) − b1(h2)] = ∂z

∫ h2

0

K2(s) −K1(s)ds

= [K2(h2) −K1(h2)] ∂zh2

∂z[K2(h2) −K1(h2)] = ∂z

∫ h2

0

K ′

2(s) −K ′

1(s)ds

= [K ′

2(h2) −K ′

1(h2)] ∂zh2

We now present the general integral identity. This identity is funda-

mental to the analysis of the inverse problem.

Theorem 4.1.1. For admissible coefficients Ci(h) and Ki(h), let hi =

Φ[Ci, Ki] denote the solution and (pi, qi) = Γ ·Φ[Ci, Ki] the observation data

for i = 1, 2. For arbitrary smooth functions P ∗(t), Q∗(t), let φ = Φ∗[P ∗, Q∗]

represent the solution to the adjoint initial value problem

C∗

1∂tφ(z, t) +K∗

1 (z, t)∂zzφ(z, t) +K
′
∗

1 (z, t)∂zφ(z, t) = 0 in QT

φ(z, τ) = 0 0 < z < L

K∗

1(0, t)(∂z(0, t) − 1) = P ∗(t), φ(L, t) = Q∗(t), 0 < t < τ

(4.12)

where

C∗

1 (z, t) (h1 − h2) =

∫ h1(z,t)

h2(z,t)

C1(s) ds

K∗

1 (z, t) (h1 − h2) =

∫ h1(z,t)

h2(z,t)

K1(s) ds

K
′
∗

1 (z, t) (h1 − h2) =

∫ h1(z,t)

h2(z,t)

K ′

1(s) ds
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Changes in the inputs ∆C = C1 − C2 and ∆K = K1 − K2 are related to

changes in the output ∆p = p1−p2 and ∆q = q1−q2. For any τ, 0 < τ < T ,

this relationship is

∫ T

0

∫ L

0

∂zh[∆K(h2)(∂zh2(z, t) − 1)∂zφ+ ∆C(h2)φ∂th2] dzdt

=

∫ T

0

[∆pP ∗(t) + ∆qQ∗(t)] dt (4.13)

Proof. Consider the pair of initial IBVPs

∂tai(hi) = ∂z(Ki(hi)(∂zhi − 1)) in QT

hi(z, 0) = 0 for 0 < z < L,

∂zhi(0, t) − 1 = 0 hi(1, t) = 0 for 0 < t < T.

for i = 1 and 2.

Subtracting the two yields

∂t(a1(h1) − a2(h2)) = ∂z(K1(h1)(∂zh1 − 1) −K2(h2)(∂zh2 − 1))

h1(z, 0) − h2(z, 0) = 0

∂z(h1(0, t) − h2(0, t)) = 0 h1(L, t) − h2(L, t) = 0

We now multiply each term of the above equation by a smooth function

φ(z, t) and integrate over space and time,

∫ T

0

∫ L

0

∂t(a1(h1) − a2(h2))φ dz dt

=

∫ T

0

∫ L

0

∂z(K1(h1)(∂zh1 − 1) −K2(h2)(∂zh2 − 1)φ dz dt

A slight rearrangement produces

∫ T

0

∫ L

0

∂t(a1(h1) − a1(h2))φ dz dt

−
∫ T

0

∫ L

0

∂z(K1(h1)(∂zh1 − 1) −K2(h2)(∂zh2 − 1))φ dz dt

=

∫ T

0

∫ L

0

∂t(a2(h2) − a1(h2))φ dz dt. (4.14)
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We now integrate each term on the left side by parts. The first term becomes

∫ T

0

∫ L

0

∂t(a1(h1) − a1(h2))φ(z, t)dz dt

=

∫ L

0

(a1(h1) − a1(h2))φ(z, t)
∣

∣

∣

T

0
dz −

∫ T

0

∫ L

0

(a1(h1) − a1(h2))∂tφ(z, t)dz dt

=

∫ L

0

C∗

1 (h1 − h2)φ(z, t)
∣

∣

∣

T

0
dz −

∫ T

0

∫ L

0

C∗

1 (h1 − h2)∂tφ(z, t)dz dt,

(4.15)

and the second,

∫ T

0

∫ L

0

∂z(K1(h1)(∂zh1 − 1) −K2(h2)(∂zh2 − 1))φ dz dt

=

∫ T

0

(K1(h1)(∂zh1 − 1) −K2(h2)(∂zh2 − 1))φ
∣

∣

∣

L

0
dt (4.16)

−
∫ T

0

∫ L

0

(K1(h1)(∂zh1 − 1) −K2(h2)(∂zh2 − 1))∂zφ dt. (4.17)

We remark that the flux term K(h)(∂zh − 1) is controlled at z = 0 and

observed at z = L. Notice that the spatial boundary term (4.16) above

contains the flux quantity. Now, consider (4.17).

∫ T

0

∫ L

0

(K1(h1)(∂zh1 − 1) −K2(h2)(∂zh2 − 1))∂zφ dt.

=

∫ T

0

∫ L

0

[K1(h1)∂zh1 −K2(h2)∂zh2] ∂zφ dz dt (4.18)

+

∫ T

0

∫ L

0

[K2(h2) −K1(h1)] ∂zφ dz dt (4.19)
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A reformulation of (4.18) leads to

∫ T

0

∫ L

0

[K1(h1)∂zh1 −K2(h2)∂zh2] ∂zφ dz dt

=

∫ T

0

∫ L

0

∂z(b1(h1) − b2(h2)∂zφ dz dt

=

∫ T

0

∫ L

0

(b1(h1) − b1(h2)∂zφ dz dt−
∫ T

0

∫ L

0

∂z(b2(h2) − b1(h2)∂zφ dz dt

=

∫ T

0

(b1(h1) − b1(h2)∂zφ
∣

∣

∣

L

0
dt−

∫ T

0

∫ L

0

(b1(h1) − b1(h2)∂zzφ dz dt

−
∫ T

0

∫ L

0

∂z(b2(h2) − b1(h2)∂zφ dz dt

=

∫ T

0

K∗

1 (h1 − h2)∂zφ
∣

∣

∣

L

0
dt−

∫ T

0

∫ L

0

K∗

1(h1 − h2)∂zzφ dz dt

−
∫ T

0

∫ L

0

(K2(h2) −K1(h2))∂zh2∂zφ dz dt. (4.20)

We also consider (4.19)

∫ T

0

∫ L

0

[K1(h1) −K1(h2)]∂zφ dz dt

−
∫ T

0

∫ L

0

[K2(h2) −K1(h2)]∂zφ dz dt

=

∫ T

0

∫ L

0

K
′
∗

1 (h1 − h2)∂zφ dz dt

−
∫ T

0

∫ L

0

[K2(h2) −K1(h2)]∂zφ dz dt (4.21)

The final term of (4.14) can be written

∫ T

0

∫ L

0

∂t(a2(h2) − a1(h2))φ dz dt

=

∫ T

0

∫ L

0

(C2(h2) − C1(h2))∂th2 dz dt

=

∫ T

0

∫ L

0

∆C(h2)∂th2 dz dt (4.22)
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Substitute (4.16, 4.20, 4.21) and this last expression into the full integral

equation (4.14). After some rearrangement, we have

∫ T

0

∫ L

0

(h1 − h2)[C
∗

1∂tφ(z, t) +K∗

1∂zzφ(z, t) +K
′
∗

1 ∂zφ(z, t)] dz dt

+

∫ T

0

∫ L

0

(C1(h2) − C2(h2))∂th2φ(z, t)dz dt

+

∫ T

0

∫ L

0

(K1(h2) −K2(h2))(∂zh2 − 1)∂zφ(z, t)dz dt

=

∫ T

0

(K1(h1)(∂zh1 − 1) −K2(h2)(∂zh2 − 1))φ(z, t)
∣

∣

∣

L

0
dt

+

∫ T

0

K∗

1 (h1 − h2)∂zφ(z, t)
∣

∣

∣

L

0
dt

+

∫ L

0

C∗

1 (h1 − h2)φ(z, t)
∣

∣

∣

T

0
dz.

Several terms now vanish. The initial and boundary conditions of the

forward problem, which we recall to be

h1(z, 0) − h2(z, 0) = 0,

∂z(h1(0, t) − h2(0, t)) = 0,

and h1(L, t) − h2(L, t) = 0,

allow us to write the reduced expression

∫ T

0

∫ L

0

(h1 − h2)[C
∗

1∂tφ(z, t) +K∗

1∂zzφ(z, t) +K
′
∗

1 ∂zφ(z, t)] dz dt

+

∫ T

0

∫ L

0

(C1(h2) − C2(h2))∂th2φ(z, t)dz dt

+

∫ T

0

∫ L

0

(K1(h2) −K2(h2))(∂zh2 − 1)∂zφ(z, t)dz dt

=

∫ T

0

(K1(h1)(∂zh1 − 1) −K2(h2))(∂zh2 − 1)φ(z, t)
∣

∣

∣

L

dt

+

∫ T

0

K∗

1(z, t)(h1 − h2)∂zφ(z, t)
∣

∣

∣

0
dt

−
∫ L

0

C∗

1 (h1 − h2)φ(z, t)
∣

∣

∣

T

dz.
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If we define

qi(t) := Ki(L, t)(∂zhi(L, t) − 1)

pi(t) := hi(0, t) for i = 1, 2,

we have

∫ T

0

∫ L

0

(h1 − h2)[C
∗

1∂tφ(z, t) +K∗

1∂zzφ(z, t) +K
′
∗

1 ∂zφ(z, t)] dz dt

+

∫ T

0

∫ L

0

(C1(h2) − C2(h2))∂th2φ(z, t)dz dt

+

∫ T

0

∫ L

0

(K1(h2) −K2(h2))(∂zh2 − 1)∂zφ(z, t)dz dt

=

∫ T

0

(q1(t)) − q2(t))φ(z, t) dt

+

∫ T

0

K∗

1 (z, t)(p1(t) − p2(t))∂zφ(z, t)dt

−
∫ L

0

C∗

1(h1 − h2)φ(z, t)
∣

∣

∣

T

dz.

Let φ = φ(z, t : P ∗, Q∗) now satisfy the associated adjoint problem

C∗

1∂tφ(z, t) +K∗

1∂zzφ(z, t) +K
′
∗

1 (z, t)∂zφ(z, t) = 0 for (z, t) ∈ QT

hi(z, T ) = 0 for 0 < z < L,

K∗

1 (0, t)∂zφ(0, t) = P ∗(t), φ(L, t) = Q∗(t) for 0 < t < T.

(4.23)

Finally, we have

∫ T

0

∫ L

0

(C1(h2) − C2(h2)) ∂th2 φ(z, t)dz dt

+

∫ T

0

∫ L

0

(K1(h2) −K2(h2)) (∂zh2 − 1) ∂zφ(z, t)dz dt

=

∫ T

0

(q1(t)) − q2(t)) Q
∗(t) dt

+

∫ T

0

(p1(t) − p2(t)) P
∗(t) dt, (4.24)
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which is the final form of the general integral identity for the two parameter

problem.

The integral identity above, (4.24), is an explicit relationship between

the measurable output, quantities associated with the adjoint problem, and

difference in the unknown coefficients C(h) and K(h). Since we wish to

identify both C and K simultaneously, we consider two distinct solutions

to the adjoint problem (4.23). If we take φ = Φ∗[P ∗, 0] and ψ = Φ∗[0, Q∗],

it is easy to generate the pair of integral identities

∫ τ

0

P ∗(t)[p(t) − p2(t)] dt =

∫ τ

0

∫ L

0

(K(h2) −K2(h2))∂zφ(∂zh2 − 1) dz dt

+

∫ τ

0

∫ L

0

(C(h2) − C2(h2))∂th2φ dt dz, (4.25)

which we refer to as the p-integral identity, and

∫ τ

0

Q∗(t)[q(t) − q2(t)] dt =

∫ τ

0

∫ L

0

(K(h2) −K2(h2))∂zψ(∂zh2 − 1) dz dt

+

∫ τ

0

∫ L

0

(C(h2) − C2(h2))∂th2ψ dt dz (4.26)

which we call the q-integral identity.

Before we begin a discussion of the identifiability of C and K from the

data pair (p, q), we first make some observations about the adjoint solutions

φ = Φ∗[P ∗, 0] and ψ = Φ∗[0, Q∗]. Recall that φ(z, t) and ψ(z, t) solve

C∗(h)∂tφ(z, t) +K∗∂zzφ(z, t) +K
′
∗∂zφ(z, t) = 0 in QT

φ(z, τ) = 0 0 < z < L

K∗(0, t)∂z(0, t) = P ∗(t), φ(L, t) = 0, 0 < t < τ
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and

C∗(h)∂tψ(z, t) +K∗∂zzψ(z, t) +K
′
∗∂zψ(z, t) = 0 in QT

ψ(z, τ) = 0 0 < z < L

K∗(0, t)∂zψ(0, t) = 0, ψ(L, t) = Q∗(t), 0 < t < τ,

respectively. Recasting these final value problems as initial value problems,

the maximum principle allows us to assert that sufficiently large and nega-

tive value of P ∗ will lead to a solution φ of the final value problem with the

property that ∂zφ(z, t) > 0. Similarly, a choice of Q∗(t) to be sufficiently

monotone negative makes ∂zψ(z, t) < 0.

Now, the lemmas 4.1.2 and 4.1.3, coupled with the previous theorem,

allow us to quickly establish the identifiability of C and K from the data

pair (p, q).

Lemma 4.1.6. For admissible coefficients Ci and Ki, let (pi, qi) = Γ ·

Φ[Ci, Ki]. If ∆p = p1 − p2 and ∆q = q1 − q2 are both identically zero,

then ∆C = C1 − C2 and ∆K = K1 −K2 are also both identically zero.

Proof. Let Ci and Ki be admissible coefficients for i = 1 and 2. If ∆C and

∆K are not identically zero, then there exist numbers, τ > 0 and h∗ < 0

such that

h♭ ≤ h2(z, t) ≤ 0 for 0 ≤ z ≤ L, 0 ≤ t ≤ τ.

Then, at least one of the functions ∆C(h2(z, t)) or ∆K(h2(z, t)) is of one

sign in the region (0, L) × (0, τ) on a positive length subinterval of [h♭, 0].

Now apply the p and q identities (4.25, 4.26) over this region (0, L)× (0, τ),
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and utilize the fact that ∆p = ∆q = 0 on [0, τ ]. This gives

∫ τ

0

∫ L

0

∆K(h2))∂zφ(∂zh2 − 1) dz dt = −
∫ τ

0

∫ L

0

∆C(h2)∂th2φ dz dt

(4.27)
∫ τ

0

∫ L

0

∆K(h2)∂zψ(∂zh2 − 1) dz dt = −
∫ τ

0

∫ L

0

∆C(h2)∂th2ψ dz dt

(4.28)

Lemma (4.1.2) affirms that ∂zh2 − 1 > 0 and lemma (4.1.3 that ∂th2 < 0.

In the remark above, we have argued that suitable choices of P ∗ and Q∗

force pzφ(z, t) > 0 and ∂zψ(z, t) < 0. But equation (4.27) implies that ∆C

and ∆K are both of the same sign, while (4.28) implies that they are of

different sign. We initially assumed that both are not identically zero. We

have reached a contradiction. Evidently, an identical data pair must lead

to an identical coefficient pair.

4.2 Phase 2 problem

The Phase 1 experiment allows exploration of the coefficients C and K

in the parameter range from h ∈ (0, L]. We now turn to coefficient recovery

in the Phase 2 experiment, in which a much larger parameter range may

be visited. Recall that in this situation, the initial condition is given by

h(z, 0) = z − L, which is the equilibrium solution to the Phase 1 problem.

Imposing no flow conditions at the top of the column (z = 0) and applying

suction at the base of the column (z = L), the capillary pressure head

h(z, t) can be shown to satisfy

C(h)∂th(z, t) = ∂z(K(h)(∂zh(z, t) − 1)) for (z, t) ∈ QT

h(z, 0) = z − L for 0 < z < L, (4.29)

∂zh(0, t) − 1 = 0 h(L, t) = s(t) for 0 < t < T
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where QT = {(z, t) : 0 < z < L, 0 < t < T} and s(t) satisfies the conditions

s(t) ∈ C1[0, T ], s(0) = 0 and s′(t) < 0 (4.30)

for 0 < t < T. We denote the solution to this initial value problem by

h = Φs[C,K].

Lemma 4.2.1. For admissible coefficients C and K, let (p, q) = Γ·Φs[C,K].

If s(t) satisfies (4.30), then

q(t) ∈ C[0, T ) q(0) = 0 and q(t) < 0

in 0 < t < T.

Proof. As before, the first two statements follow immediately from the so-

lution form. For the last statement, define the new variable u(z, t) :=

h(z, t) − (z − L). Then

∂tu = ∂th and ∂zu = ∂zh− 1

If h = Φs[C,K] solves the direct problem (4.29), then u satisfies the initial

boundary value problem

C(h)∂tu(z, t) − ∂z(K(h)∂zu(z, t)) = 0 for (z, t) ∈ QT

u(z, 0) = 0 for 0 < z < L,

∂zu(0, t) = 0 u(L, t) = s(t) for 0 < t < T (4.31)

Now multiply each term by an arbitrary smooth function φ(z, t) and inte-

grate by parts to generate
∫ T

0

∫ L

0

C(h)∂tu∂zφ dz dt =C(h̃)

[
∫ L

0

u∂zφ
∣

∣

∣

T

0
dz −

∫ T

0

∫ L

0

u∂tzφ dz dt

]

=C(h̃)

[
∫ L

0

u∂zφ
∣

∣

∣

T

0
dz −

∫ T

0

u∂tφ
∣

∣

∣

L

0
dt

+

∫ T

0

∫ L

0

∂zu∂tφ dz dt

]

, (4.32)
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where h̃ = h(z̃, t̃) for some (z, t) in the region QT = (0, T ) × (0, L). and

∫ T

0

∫ L

0

∂z(K(h)∂zu)∂zφ dz dt

=

∫ T

0

K(h)∂zu∂zφ
∣

∣

∣

L

0
−
∫ T

0

∫ L

0

(K(h)∂zu∂zzφ dz dt (4.33)

Now let φ(z, t) solve the adjoint problem

C(h̃)∂tφ+K(h)∂zzφ = 0 in QT ,

φ(z, T ) = 0 0 < z < L,

φ(0, t) = 0 ∂zφ(L, t) = θ(t) in 0 < t < T,

where θ(T ) = 0, but is otherwise arbitrary. Notice that the initial condition

of this adjoint problem implies ∂zφ(z, T ) = 0 and that the left boundary

condition implies φt(0, t) = 0. With these observations, we now combine

(4.32) with (4.33), and slightly rearrange terms to form the full expression

∫ T

0

∫ L

0

[C(h̃)∂tφ+K(h)∂zzφ]∂zu dz dt (4.34)

= −C(h̃)

[
∫ L

0

u∂zφ
∣

∣

∣

T

0
dz −

∫ T

0

u∂tφ
∣

∣

∣

L

0
dt

]

−
∫ T

0

K(h)∂zu∂zφ
∣

∣

∣

L

0
dt.

The homogeneous adjoint equation causes the first integrand to vanish.

Similarly, since u(z, 0) = 0 and ∂zφ(z, T ) = 0, the integral

∫ L

0

u∂zφ
∣

∣

∣

T

0
is

zero as well. The side conditions u(L, t) = s(t) and φ(0, t) = 0 imply that

the integral

∫ T

0

u∂tφ
∣

∣

∣

L

0
dt =

∫ T

0

u∂tφ
∣

∣

∣

L

dt

=

∫ T

0

s(t)θ′(t)dt

= s(t)θ(t)
∣

∣

∣

T

0
−
∫ T

0

s′(t)θ(t) dt

= −
∫ T

0

s′(t)θ(t) dt, (4.35)
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since s(0) = 0 and θ(T ) = 0. Now consider (4.33),

∫ T

0

K(h)∂zu∂zφ
∣

∣

∣

L

0
dt =

∫ T

0

K(h)∂zu∂zφ
∣

∣

∣

L

dt

=

∫ T

0

K(h)(∂zh− 1)φ
∣

∣

∣

L

dt

=

∫ T

0

q(t)θ(t) dt. (4.36)

Substituting (4.35) and (4.36) into (4.34) yields the simple integral rela-

tionship

C(h̃)

∫ T

0

s′(t)θ(t) dt =

∫ T

0

q(t)θ(t) dt (4.37)

Recall that the suction s(t) satisfies s′(t) < 0, which implies that a choice

of positive θ(t) will make the left side of (4.37) strictly negative. Since θ is

otherwise arbitrary, q(t) must be strictly negative.

The proof of the next lemma is very similar to the Phase 1 case, and

it omitted.

Lemma 4.2.2. For admissible coefficients C and K, let h = Φs[C,K]. If

s(t) satisfies 4.30, then ∂zh(L, t) − 1 < 0 almost everywhere in QT .

Lemma 4.2.3. For admissible coefficients C and K, let h = Φs[C,K]. If

s(t) satisfies 4.30, then ∂th(z, t) < 0 almost everywhere in QT .

Proof. Proceed as in lemma 4.1.3 to reach

∫∫

QT

[

C(h)∂tφ+K(h)∂zzφ+K ′(h)∂zφ
]

∂th dz dt

=

∫ T

0

K(h)(∂zh− 1)∂tφ
∣

∣

∣

L

0
dt (4.38)

−
∫ L

0

K(h)(∂zh− 1)∂zφ
∣

∣

∣

T

0
dz (4.39)

+

∫ T

0

K(h)∂th∂zφ
∣

∣

∣

L

0
dz. (4.40)
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Since K(h(L, t))(∂zh(L, t)−1) = q(t) and ∂zh(0, t)−1 = 0, (4.38) becomes

∫ T

0

K(h)(∂zh− 1)∂tφ
∣

∣

∣

L

0
dt =

∫ T

0

q(t)∂tφ(L, t) dt.

Taking φ(z, T ) = 0 implies that ∂zφ(z, T ) = 0. The initial condition

h(z, 0) = z−L eliminates the term (4.39). Finally, if we set both ∂zφ(0, t) =

0 and ∂zφ(L, t) = 0, then (4.40) will vanish. So, if we allow φ(z, t) to satisfy

the adjoint problem

C(h)∂tφ+K(h)∂zzφ+K ′(h)∂zφ = F (z, t) in QT ,

φ(z, T ) = 0, 0 < z < L,

∂zφ(0, t) = 0, ∂zφ(L, t) = 0 0 < t < T,

then we may write

∫∫

QT

∂thF (z, t) dz dt =

∫ t

0

q(t)∂tφ(L, t)

This can be rewritten as

∫∫

QT

∂thF (z, t) dz dt = q(t∗)

∫ T

0

∂tφ(L, t)dt

= q(t∗)φ(L, t)
∣

∣

∣

T

0

= − q(t∗)φ(L, 0),

noting the initial condition. Restricting F to be nonnegative but otherwise

arbitrary, the maximum principle will ensure that φ(z, 0) will be negative

almost everywhere. It has been shown that q(t) < 0, for 0 < t < T ,

implying that the right side is negative. Evidently, since F is nonnegative,

∂th must be negative almost everywhere in QT .
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Lemma 4.2.4. For admissible coefficients C and K, let h = Φs[C,K] and

(p, q) = Γ · Φs[C,K]. If s(t) satisfies 4.30, then for each τ, 0 < τ < t, h

satisfies

p(τ) +
z

L
(s(τ) − p(τ)) < h(z, τ) < z − L

Proof. As in 4.2.1, we recast the equation (4.29) using u(z, t) := h(z, t) −

(z − L). As before, this leads to

C(h)∂tu(z, t) − ∂z(K(h)(∂zu(z, t)) = 0 for (z, t) ∈ QT

u(z, 0) = 0 for 0 < z < L,

∂zu(0, t) = 0 u(L, t) = s(t) for 0 < t < T (4.41)

Appealing to the maximum-minimum principle, the function u(z, t)

must attain its both its maximum and minimum on the parabolic boundary.

The maximum principle allow us to deduce that this maximum must be

zero. Since s(t) is a decreasing function and ∂zu(0, t) = 0, the minimum

must occur on the right boundary, where u(L, t) = s(t). Since ∂zh(z, t) < 1

almost everywhere, it follows that ∂zu(z, t) < 0. Therefore, u(z, t) is a

convex function. Since u(0, t) = p(t) and u(L, t) = s(t), u(z, τ) satisfies

u(0, τ) +
z

L
(u(L, τ) − u(0, t)) < u(z, τ) < 0.

This is simply the statement that the solution profile lies above the line

segment connecting the value of u on the right boundary to the value of u

on the left boundary, and below the constant zero function. Recasting in
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h, and noting that p(τ) = u(0, τ) − L and s(τ) = u(L, τ), this becomes

u(0, τ) + (z − L) +
z

L
(u(L, τ) − u(0, t)) < u(z, τ) + (z − L) < (z − L)

(u(0, τ) − L) + z +
z

L
(u(L, τ) − (u(0, τ) − L) − L) < h(z, τ) < (z − L)

p(τ) + z − z +
z

L
(s(τ) − p(τ)) < h(z, τ) < (z − L)

p(τ) +
z

L
(s(τ) − p(τ)) < h(z, τ) < (z − L),

which holds for h(z, τ) for almost every z in [0, L]. The monotonicity of

s(t) from (4.30) (and consequently p(t)) allows this to hold for all t, 0 < t <

τ.

As in the Phase 1 setting, we can show,

Theorem 4.2.1. For admissible coefficients C(h) and K(h), let hi(z, t) =

Φs[Ci, Ki] and (pi, hi) = Γ · Φs[Ci, Ki] for i = 1, 2. For arbitrary smooth

functions P ∗(t), Q∗(t), let φ = Φ∗[P ∗, 0] and ψ = Φ∗[0, Q∗]. Changes in

the inputs ∆C = C1 − C2 and ∆K = K1 − K2 are related to changes in

the output ∆p = p1 − p2 and ∆q = q1 − q2. For any τ, 0 < τ < T , this

relationship is

∫ T

0

∫ L

0

{∆K(h2)(∂zh2(z, t) − 1)∂zφ+ ∆C(h2)φ∂th2} dz dt

=

∫ T

0

∆p P ∗(t) dt (4.42)

and

∫ T

0

∫ L

0

{∆K(h2)(∂zh2(z, t) − 1)∂zψ + ∆C(h2)ψ∂th2} dz dt

=

∫ T

0

∆q Q∗(t) dt (4.43)

The identifiability of C and K quickly follow, with the result
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Lemma 4.2.5. For admissible coefficients Ci and Ki, let (pi, qi) = Γ ·

Φs[Ci, Ki]. If ∆p = p1 − p2 and ∆q = q1 − q2 are both identically zero,

then ∆C = C1 − C2 and ∆K = K1 −K2 are also both identically zero.

The last two proofs are omitted, as they are nearly identical to the

arguments of theorem 4.1.1 and lemma 4.1.5.
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Chapter 5

TWO PARAMETER NUMERICAL

EXPERIMENTS

In this section, we present a numerical implementation of the recovery

algorithm and analyze this process via a series of numerical experiments.

We consider several numerical experiments designed to gain insight into

the recovery of the two unknown coefficients C(h) and K(h) in the two

parameter quasilinear conduction diffusion equation given by

C(h(z, t))∂th(z, t) − ∂z(K(h(z, t))(∂zh(z, t) − 1)) = 0. (5.1)

In porous media applications, (5.1) is referred to as the Richards Equa-

tion, and is widely used to model fluid flow in porous media. Meaningful

solutions require an accurate description of soil characteristics, reflected in

the coefficients C(h) and K(h). The values C(h) and K(h) must be ex-

perimentally determined, in either a direct or indirect manner. Here we

focus on the indirect simultaneous determination of these parameters via

an algorithm based on the integral identities developed in the preceding

chapter. It is hoped that this approach will provide a more complete un-

derstanding of the identification process. The integral method can be used

independently in coefficient recovery, or viewed as a tool to examine cases

where identification fails.
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The method presented here is based on the integral identities
∫ τ

0

P ∗(t)[p(t) − p2(t)] dt =

∫ τ

0

∫ L

0

(K(h2) −K2(h2))∂zφ(∂zh2 − 1) dz dt

+

∫ τ

0

∫ L

0

(C(h2) − C2(h2))∂th2φ dz dt (5.2)

which we refer to as the p-integral identity, and
∫ τ

0

Q∗(t)[q(t) − q2(t)] dt =

∫ τ

0

∫ L

0

(K(h2) −K2(h2))∂zψ(∂zh2 − 1) dz dt

+

∫ τ

0

∫ L

0

(C(h2) − C2(h2))∂th2ψ dz dt (5.3)

which we call the q-integral identity. The general identities on which these

are based was developed in the previous chapter, equation (4.13). We again

note that (4.13) is only exact if we evaluate C∗, K∗ and K ′∗ in the ad-

joint problems at possibly different indeterminate values of h. In the usual

fashion, we instead solve an approximate adjoint problem, and use these

approximate values in place of their exact representations in the p and q

integral identities. The error of this approximation approaches zero as the

numerical solution h2 approaches the true solution h.

The algorithm presented in this chapter seeks to create linear polygonal

approximations to the unknown coefficients C(h) and K(h) utilizing obser-

vations made of the system. The measurements are considered to be taken

on the boundary of the media, z = 0 and z = L, since placing measurement

devices in the interior region might be difficult or impossible. While not the

only observable boundary measurements, the state p(t) = h(0, t) and the

flux q(t) = K(h(L, t))(∂zh(L, t)−1) are both easily obtained. In chapter 4,

the map Φ : [C,K] → (p, q) has been shown to be continuous and invertible

under the monotone forcing (ie drainage and/or suction) constraint via the

integral identities.

We now begin with a description of the numerical details.
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5.1 Numerical methodology

The nonlinear PDE 5.1 was discretized on a non-uniform space grid.

The resulting system of ODEs was then submitted to a implicit time inte-

gration scheme.

The standard finite difference scheme was used. Using a space dis-

cretization over the grid {0 = x1, x2, ..., xn−1, xn = L} and the convention

that h(xi, t) = ht
i, the scheme can be written

C(ht
i) ḣ

t
i =

(

K(ht
i+1/2)

(

ht
i+1 − ht

i − ∆x
)

)

−
(

K(ht
i−1/2)

(

ht
i − ht

i−1

)

− ∆x
)

(∆x)2 ,

although here it was implemented for use on a possibly non uniform grid,

and was written

C(ht
i) ḣ

t
i =

(

K(ht
i+1/2)

(

ht

i+1
−ht

i

∆xi

− 1
))

−
(

K(ht
i−1/2)

(

ht

i
−ht

i−1

∆xi−1
− 1
))

∆xi−1/2

.

5.2 Recovery Algorithm

We consider the inverse problem in which the two coefficients C = C(h)

and K = K(h) are to be identified from data that is assumed to be recorded

at the fixed time nodes 0 = t0 < t1 < . . . < tN = T in the interval [0, T ]:

p(tk) = h(0, tk) and q(tk) = K(h(L, tk))(∂zu(L, t) − 1).

This data will be referred to as the p and q data, respectively. We will

use both pieces of data to construct a piecewise linear continuous ap-

proximation to the unknown coefficients C and K. This data, which we

further denote pk = p(tk) and qk = q(tk) for k = 0, 1, ...., N, partitions

the interval I = [0, T ] into what we will term the inner mesh. To pa-

rameterize the coefficient space, we first define µi = min(h(x, ti)) , where

115



µ0 > µ1 > . . . > µM . Recall that the pressure head h(x, t) has been shown

to be monotone decreasing under a gravity drainage restriction, thus mak-

ing this parameterization possible. We can now define an associated outer

mesh J = [µ0, µ1, , . . . , µM ], which partitions the domain of the coefficients

of C and K in the drainage experiment. The outer mesh determines the

degrees of freedom of the recovered parameters C and K.

The integral identity requires both the integration of g(t) and h(t) for

t in [0, T ] and h(x, t) in [0, L] × [0, T ]. The use of numerical integration

methods require that the inner mesh, on which the observed data are rep-

resented, be sufficiently finer than the outer mesh. This limits the ability

to arbitrarily refine the outer mesh in order to improve accuracy of identi-

fication.

We consider the family of polygonal functions, Ĉ and K̂. Define as in

the one parameter problem the basis functions {λi}M
0 , given by

λi(u) =















0 if u < µi−1

u− µi−1

µi − µi−1

if µi−1 ≥ u ≥ µi

1 otherwise.

(5.4)

We can now define

Ĉ(h) =
M
∑

i=0

ciλi(h) K̂(h) =
M
∑

i=0

kiλi(h). (5.5)

We introduce several notations:

• Ĉ(u) = PM [c0, c1, . . . , cM ] denotes the polygonal coefficient given by

(5.5) based on nodal values [c0, c1, . . . , cM ].

• K̂(u) = PM [k0, k1, . . . , kM ] denotes the polygonal coefficient given by

(5.5) based on nodal values [k0, k1, . . . , kM ].
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• h(x, t;C,K) denotes the solution of the direct problem (2.1) with

coefficient C and K.

• φ(x, t;C,K, P ∗, 0) denotes the solution of the adjoint problem (4.12)

with coefficients C
def
= C(µ(x, t)), K

def
= K(µ(x, t)) and boundary

data (P ∗, 0) where K(0, t)∂zφ(0, t) = P ∗(t) and φ(L, t) = 0.

• ψ(x, t;C,K, 0, Q∗) denotes the solution of the adjoint problem (4.12)

with coefficients C
def
= C(µ(x, t)), K

def
= K(µ(x, t)) and boundary

data (0, Q∗) where K∗(0, t)∂zψ(0, t) = 0 and ψ(L, t) = Q∗(t).

Assume now that the data pair (p(t), q(t)) are produced by an unknown

coefficient pair (C,K). Fix an outer partition, calling it Π = {0 = µ0 <

mu1 < . . . < µM} of J. We will now define the polygonal coefficients C and

K using a recursive algorithm which utilizes the observed (p, q) data pair

as follows:

1. c0 and k0 are assumed to be given.

2. for i = 1, 2, . . . , tM

(a) Compute integrals

M11 =

∫ ti

ti−1

∫ 1

0

λk(h2)(∂zh2 − 1)∂zφ dt dx

M21 =

∫ ti

ti−1

∫ 1

0

λk(h2)(∂zh2 − 1)∂zψ dt dx

M12 =

∫ ti

ti−1

∫ 1

0

λk(h2)(∂th2)φ dt dx

M22 =

∫ ti

ti−1

∫ 1

0

λk(h2)(∂th2)ψ dt dx
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(b) and

b1 =

∫ ti

ti−1

(p(t) − p2(t))P
∗(t)dt (5.6)

b2 =

∫ ti

ti−1

(q(t) − q2(t))Q
∗(t)dt (5.7)

(c) Solve the linear system

[

ki

ci

]

=

[

ki−1

ci−1

]

+

[

M11 M12

M21 M22

]

−1 [
b1
b2

]

(5.8)

where

C1(h) = PM [c0, c1, . . . , cj−1, cj],

C2(h) = PM [c0, c1, . . . , cj−1, cj−1],

K1(h) = PM [k0, k1, . . . , kj−1, kj],

K2(h) = PM [k0, k1, . . . , kj−1, kj−1],

h2(x, t) = h2(x, t;C2, K2),

p2(t) = h2(0, t)

q2(t) = K2(h(L, t))(∂zh2(L, t) − 1)

φ(x, t) = φ(x, t;C1, K1)

In this way, n pairs of of nodal values can be generated. Note that the

nodal values [c0, c1, . . . , cj−1, cj] are not actual coefficient values. Instead,

the cumulative sum of these values represents the coefficient value.

Experimentally, however, the flux is often reported in an integrated

form, which we call the cumulative flux. This smoothes the often noisy

flux data measurements. While it is possible to numerically differentiate

this cumulative flux data, an alternative expression that directly allows
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cumulative flux is quite easy to develop. Once again we turn to integration

by parts. Consider the general b2 term in the identity, given by

b2 =

∫ T

0

(q(t) − q2(t))Q
∗(t)dt

Integrating this by parts yields the formal expression

= (q(t) − q2(t))Q
∗(t)
∣

∣

∣

T

0
+

∫ T

0

{
∫ t

0

(q(s) − q2(s)) ds

}

Q
′
∗(t)dt.

Note that Q(0) −Q2(0) = 0 and that Q∗(T ) = 0. Denoting the cumulative

quantities as Q(t) :=
∫ t

0
q(s)dt and Q2(t) :=

∫ t

0
q2(s)dt, we write

b2 =

∫ T

0

(Q(t) −Q2(t))Q
′
∗(t) dt. (5.9)

Evidently, if Q∗(t) is chosen to be differentiable, we are then able to

directly apply the cumulative flux measurement in the integral identity.

We note that this method may be employed any number of times, limited

only by the smoothness of the dual data. This suggests a simple technique

to filter noisy data. This formulation only requires that we solve the q-

adjoint problem numerically for a time dependent, and suitably smooth,

data function Q∗(t). An alternative expression for b1 involving the integral

of the state data p(t) follows similarly.

5.3 Numerical Code

As in the one parameter recovery algorithm, the code was constructed

in several parts. The first, the direct algorithm, generates boundary data

h(0, t) = p(t) and K(h(L, t))(∂zh(L, t) − 1) = q(t) by first computing a

numerical solution of the direct problem. The second part of the code was

the development of the dual algorithm, used to produce a numerical ap-

proximation to the adjoint problem. The final portion was the recovery
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algorithm, which assembled the components generated by the direct and

adjoint algorithms, and used the integral identities to produce an approxi-

mate coefficient pair.

All numerical methods were coded in the Matlab 6.1 environment. In

particular, the ability of several of the solvers in the ODE suite to solve

problems containing a mass matrix was of great use. As in the one pa-

rameter implementation, the return of a solution structure was beneficial

in several numerical experiments.

The PDE was discretized using Finite Difference (FD) methods in space

to produce a system of ODEs. Finite Element methods (FEM) could also

have been used but were not. Boundary Value methods (BVM) could also

have been implemented, although experiments in the one parameter case

indicated that this would prove computationally inefficient.

5.3.1 Direct algorithm implementation

In this section we discuss the code used to generate a numerical so-

lution to the direct problem. Subsequent work required that this code be

fairly efficient and flexible. The nonlinear terms of the equation were man-

aged at each time level as a linear interpolation of a passed call-out table.

The resulting system of ODEs was submitted to Matlab’s time integration

methods, as chosen by the user. We now present a template for the code

used to generate the so called direct solution.

5.3.2 Direct Problem

The boundary conditions are passed as call-out tables, which are eval-

uated with a linear interpolation via Matlab’s interp1 command at each

time step. The boundary conditions are once again handled via ghost nodes.
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Notice that this code does not use the value of C. It was certainly possi-

ble to include the C value in the inputs, and then divide by this quantity

in the final line of the code. In practice, however, the magnitude of C is

small. In several preliminary experiments, the direct implementation of C

occasionally led to difficulty. As a remedy, C was considered to be a mass

matrix, which allowed the solver to manage this term.

5.4 Phase 2

Phase 1 experiment allowed exploration of the coefficients C and K in

the parameter range from h ∈ (0, L]. We now turn to coefficient recovery

in the Phase 2 experiment, in which a much larger parameter range may

be visited. Recall that in this situation, the initial condition is given by

h(z, 0) = z − L, which is the equilibrium solution to the Phase 1 problem.

Imposing no flow conditions at the top of the column (z = 0) and applying

suction at the base of the column (z = L), the capillary pressure head

h(z, t) satisfies

C(h)∂th(z, t) = ∂z(K(h)(∂zh(z, t) − 1)) for (z, t) ∈ QT

h(z, 0) = z − L for 0 < z < L,

∂zh(0, t) − 1 = 0 h(L, t) = s(t) for 0 < t < T

where QT = {(z, t) : 0 < z < L, 0 < t < T}, and the suction function s(t)

is smooth and monotone in time.

5.5 Comparison of Phase 1 and Phase 2 Experiments

Mathematically simpler than the Phase 2 suction experiment, the Phase

1 drainage experiment provides some valuable insight into the physical pro-

cess. While much time was spent considering this case, only a brief synopsis
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is presented. The Phase 2 recovery provide a much richer basis for discus-

sion than do the experimental results of the Phase 1 experiments. The

experimental device, when limited to a simple drainage experiment, is able

to yield data probing only pressure heads ranging from 0 to the depth of

the soil column. In practice this is approximately 3 to 5 cm. For simplicity,

pressure head will be measured in centimeters of water. In comparison, the

suction experiment is constrained only by the working limitations of the

laboratory apparatus, thereby admitting a parameter range of over 200 cm.

5.6 Experiments utilizing only the forward solution

We begin with a discussion of coefficient recovery in the Phase 1 ex-

periment. Recall that this is the situation is which a completely saturated

vertical soil column is allowed to drain under gravity. Imposing no flow

conditions at the top of the column (z = 0) and zero head at the base of

the column (z = L), the capillary pressure head h(z, t) satisfies

C(h)∂th(z, t) = ∂z(K(h)(∂zh(z, t) − 1)) for (z, t) ∈ QT

h(z, 0) = 0 for 0 < z < L,

∂zh(0, t) − 1 = 0 h(L, t) = 0 for 0 < t < T

where QT = {(z, t) : 0 < z < L, 0 < t < T}.

We begin by presenting experiments in which the coefficients are taken

from the families

C(h, α) = h (1 − h)α ||h(1 − h)α||−1
∞

+ 1/2

K(h, β) = (1 + βh) H(h + 1/β) + 1/2,

where α ranges between 1/3 and 3 and β takes values from 0 to 8. Also,

H(h + 1/β) is the Heaviside function centered at −1/β. In application,
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the capacity and conductivity coefficients will be qualitatively similar to

elements in these families. Individual coefficients from these families were

used to generate p(t) and q(t) data over the time span from t = 0 to t = 3

with 75 uniform nodes.

While mathematically interesting, the drainage experiment was viewed

as a preliminary stage of coefficient recovery in the Phase 2 experiment. As

such, we present two coefficient experiments simulated in a unit long col-

umn, but selected the scale of the coefficients to probe behavior consistent

with the Phase 2 experiment. Although physical arguments indicate that

the true conductivity coefficient K should be monotone decreasing as h

decreases, we have not limited the discussion to this case.

5.6.1 Allowing C(h) to vary

Here we fix β = 2 and let α take values from {1/3, 1, 3}, and plot

over the time range from t = 0 to t = 3. In the plot of p and q data, the

triangles indicate every 5th time observation. Similarly, the crosses in the

plots of the coefficient represent the state of the system h(t) when observed

on the same time nodes as the data plots above them. In this way we

have an indication of both the speed of the process and the initial value the

coefficients. We first observe that time at which p and q are coincident

occurs earlier as the maximum of C moves closer to zero. Notice also that

the crosses occur more rapidly in h space as α increases. While the time

scales differ, the data appears qualitatively similar. The same sharp drop in

the P data occurs as the does the apparent change in curvature of the q line

plot. In addition, if we call this crossing time tc, then value at the crossing

time p(tc) = q(tc) seems remarkably consistent. Table 5.1 makes this more

apparent. The response in the data is encouraging. This indicates that

123



0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

t

p(
t)

 a
nd

 q
(t

)

Data p(t) and q(t)
p
q

−0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
0

0.5

1

1.5

2

h

C
(h

) 
an

d 
K

(h
)

α = 1/3 β = 2

C
K

Figure 5.1: Data and coefficients with α = 1/3 and β = 2

0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

t

p(
t)

 a
nd

 q
(t

)

Data p(t) and q(t)
p
q

−0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
0

0.5

1

1.5

2

h

C
(h

) 
an

d 
K

(h
)

α = 1 β = 2

C
K

Figure 5.2: Data and coefficients with α = 1 and β = 2
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Figure 5.3: Data and coefficients with α = 3 and β = 2

Parameter values Crossing time Crossing value final p final q

α = 1/3, β = 2 0.2450 -0.6545 -0.9991 -0.0014
α = 1/2, β = 2 0.2600 -0.6534 -0.9991 -0.0014
α = 1, β = 2 0.2950 -0.6571 -0.9995 -0.0008
α = 2, β = 2 0.3250 -0.6679 -0.9999 -0.0002
α = 3, β = 2 0.3300 -0.6809 -1.0000 -0.0000
α = 1, β = 0 0.3500 -0.4170 -0.9553 -0.0365
α = 1, β = 1 0.2950 -0.6571 -0.9995 -0.0008
α = 1, β = 2 0.2900 -0.6116 -0.9967 -0.0040
α = 1, β = 3 0.2700 -0.5606 -0.9917 -0.0088
α = 1, β = 4 0.2500 -0.5216 -0.9870 -0.0130
α = 1, β = 5 0.2350 -0.4935 -0.9832 -0.0162

Table 5.1: Data crossing times and values
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Figure 5.4: Data and coefficients with α = 1 and β = 1

both p and q respond to the variation in the C coefficient. The crossing

time seems to be similar to the breakthrough time of the one parameter

experiments.

5.6.2 Allowing K(h) to vary

Here we fix α = 1 and let β take values from 1 to 5 and plot over the

time range from t = 0 to t = 3. The initial slope of the coefficient K is given

by the parameter β. In practice, this coefficient is often represented as a

function with rapid initial decrease. Here we attempt to gain some intuition

about the effect that this has on the data p and q. As in the plots in the

last section, the triangles indicate every 5th time observation. Similarly, the

crosses in the plots of the coefficient represent the state of the system h(t)

when observed on the same time nodes as the data plots above them.
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Figure 5.5: Data and coefficients with α = 1 and β = 2

0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

t

p(
t)

 a
nd

 q
(t

)

Data p(t) and q(t)
p
q

−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0
0

0.5

1

1.5

2

h

C
(h

) 
an

d 
K

(h
)

α = 3 β = 2

C
K

Figure 5.6: Data and coefficients with α = 1 and β = 4
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We first observe that time at which p and q cross again diminishes as

the effective region of the coefficient is grows as evidenced in the plots and

the table 5.1. We think of the effective coefficient as an average value of the

coefficient in the time period of interest. Notice also that the q(t) appears

relatively similar in both 5.4 and 5.5, but shows large response in figure 5.6.

Table 5.1 makes this more apparent.

5.7 Experiments requiring full Recovery algorithm

The integral identity allows exploration of

• Iteration

• Dimension of Nodal Basis

• Boundary Condition selection

• Scaling of inversion

• Selection of Dual data

• Dependence of solution on time

• Dimensional aspects of the coefficients C(h)

• Noisy Data

Before we begin the discussion of error we describe the error measures

that were used. Many of the following plots are of a relative error indicator.

This was computed via the formula
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While not a true norm, this indicator proved to be useful as an tolerance

measure for iteration. The ability of error to cancel in individual time

strips allowed iteration to proceed efficiently. Since the integral identity

allows much of the observation error to cancel per strip, the error indicator

was formulated to reflect this. If the standard L1 or L2 measures had been

used, the error introduced numerically and or experimental would have been

more noticeable.

Recall that the one parameter error was typically the L2 norm of the

coefficient error. A similar form could have been implemented in the two

parameter experiments in cases where the true coefficient is known. How-

ever, the initial goal was recovery of unknown coefficients. To preserve

continuity in all cases presented here, an alternative error formulation in-

volving only observable quantities was used. A relative error indicator was

used in recognition that the true physical process is quite likely to contain

a certain level of uniform noise, and that this should become less influential

as the true signal magnitude increased. These heuristic arguments might

be made concrete by one wishing to explore the numerical analysis of the

recovery process, which we do not attempt here.

We begin the discussion with iteration. These experiments are funda-

mental to achieve reasonable recovery via the integral identity method.

5.7.1 Iteration

In this section, we consider the effect of iteration in the recovery al-

gorithm. By iteration, we mean the repeated application of the integral

identity on a single time strip and utilizing the previous pair of coefficient

approximations. Initial experiments made clear that while the first coef-

ficient estimates are fairly accurate, a small number of iterations greatly

129



improves the recovery. We present a series of numerical experiments based

on the Phase 1 problem with basic dynamics in the coefficients C and K.

Restriction to the drainage situation allows the time scale of the process

is more easily understood than the Phase 2 type experiment, in which the

suction may alter the relative time scales. We take

C(h) = γC ±mCh and K(h) = γK ±mKh

To limit the difficulty in recovery, we generate data using these coefficients

on 1001 equally space time nodes. We then choose a single node in coef-

ficient space, based on the maximum state at time t = 1 in the coefficient

space, and perform recovery.

We provide plots of two such runs. In the first, (5.7), we attempt to

recover the coefficient pair

C(h) = 1 − (1/2) h and K(h) = 2 + (1/2)h

while in the second, we attempt recovery of

C(h) = 2 + (1/2) h and K(h) = 1 − (1/2)h.

We plotted the sequence of iterates of the approximate coefficient. In both

cases, the method converges very quickly. There is, however, a noticeable

difference in the initial estimate. Initially, the method has more difficulty

in computing an accurate update in first of the two plots (5.7), but after

a single iteration, the approximation and the true coefficient are virtually

indistinguishable. In the second plot (5.8), the initial estimates are quite

good, however the iteration appears to converge more slowly. It is pos-

sible that the shorter state interval used in the second recovery might be

contributing to the visibly less accurate initial approximation of C. We

note that both recovery utilized the same number of observations. In

subsequent experiments, we use iteration unless otherwise noted.

130



−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
Iteration Run 10

State H

C
oe

ffi
ci

en
t

True C
C Iteration 0
C Iteration 1
C Iteration 2
True K
K Iteration 0
K Iteration 1
K Iteration 2

Figure 5.7: Iteration, C(h) = 1 − (1/2)h and K(h) = 2 + (1/2)h
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Figure 5.8: Iteration, C(h) = 2 + (1/2)h and K(h) = 1 − (1/2)h
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Figure 5.9: Error for various uniform nodal bases

5.7.2 Dimension of Nodal Basis

The dimension of the nodal basis plays a role in accuracy of recovery.

Here we consider the recovery of the coefficients

C(h) = 1/2 − h/25 (h/100 + 1) and

K(h) = 3/2 + h/25 (h/100 + 1).

The system was simulated under gravity drainage for 1 unit of time, at

which point suction was applied and the lower boundary pressure linearly

pulled to h = −100 at t = 100. Uniform grids ranging from 1 free node to

10 free nodes were used as the nodal basis for both C and K. As is clear

from figure 5.9, a coarse nodal basis leads to error in the recovery, as does a
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Figure 5.10: Error summary for uniform nodal bases

nodal basis that is highly refined. There appears to be an optimal uniform

grid in the interval of 6 to 10 free nodes. As remarked upon in the one

parameter recovery, here again the overshoot undershoot feature is evident

in the case of the 16 dimensional C nodal experiment, and to a lesser extent

in the related K coefficient.

Arguments similar to those in chapters 2 and 3 suggest that the error

in a lower dimensional basis arise from the failure of the polygonal basis to

approximate the true coefficient. In addition, there is increasing uncertainty

inherent in the linearization of the adjoint problem. Recall that the relative

size of the time interval between successive nodal elements corresponds to

a larger possible region from which the adjoint coefficient approximation is

chosen. Evidently, the error resulting from solving an approximate adjoint

problem decreases as the nodal basis is refined. Therefore, the error seen in

the highly refined experiments are not a result of the failure of the polyg-

onal basis to approximate the coefficients nor the adjoint approximation.

Instead, we consider this error to arise from numerical instabilities as the
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Index function for t > 1

BC1 s(t) = −t
BC2 s(t) = −t2
BC3 s(t) = −t1/2

BC4 s(t) = −1/2t
BC5 s(t) = −2t
BC6 s(t) = −4t

BC7 s(t) =

{

−10 1 < t < 10

−25 10 < t < 25

Table 5.2: Suction functions used in boundary experiments

integrals quantities involved in the recovery become increasing smaller. At

some point, the numerical error begins to dominate this calculation, and the

error begins to build. Also, as in the one parameter case, an error cascade

develops as errors in previous time strips are compounded. While this is

not in the scope of the current research, a detailed numerical analysis of

the error is possible to make these statements more precise.

5.7.3 Boundary Condition

We now consider the effect of various boundary conditions on both

the data and the recovered coefficients. In the Phase 2 experiment, we

are free to chose the boundary state data at the left endpoint, which we

denote BC(t). In all experiments in this section, we allow the system to

drain under gravity for 1 unit of time. We then apply suction at z = L,

choosing this control from either a linear family, a power family or a step

function, for a total of seven distinct boundary conditions. We refer to

these as {BC1,BC2,BC3,BC4,BC5,BC6,BC7}, and provide the equations of

each in table 5.7.3.

The coefficient recovery algorithm is applied with the single break point

prescribed at h = −10.

134



0 5 10 15 20 25

−25

−20

−15

−10

−5

0

Boundary Conditions over time

Time

S
ta

te

BC1
BC2
BC3
BC4
BC5
BC6
BC7

Figure 5.11: Boundary Conditions

Figure 5.11 suggests another classification of the boundary conditions.

Notice that BC1, BC2 and BC4 all reach h = −10 after time 11. The other

suction functions reach the cutoff state much more rapidly. Since the obser-

vation nodes are uniformly distributed in time, the subsequent experiments

may be classified according to the number of data nodes used. The ordering

in this method would then be {BC4,BC2,BC1,BC5,BC3,BC6,BC7}, where we

begin with the condition leading to the largest observation set.

The pressure profiles are exhibited as recorded on equidistant time

nodes for all combinations of the linear coefficients C(h) = 3 ± (1/10)h

and K(h) = 3 ± (1/10)h. In the physical setting, runs 3 and 4 are the

most relevant, since K is generally assumed to be monotone decreasing.

We remark that the data for run 1 and run 4 appear nearly identical for all

simulated boundary conditions.
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Figure 5.13: Simulations with boundary condition and C down K up
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Figure 5.14: Simulations with boundary condition and C up K down
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Figure 5.16: Error over Linear family

Once the numerical simulations were complete, the relative error in-

dicator was computed for each family. Figure 5.16 depicts the error in

the linear family recovery, while figure 5.17 contains information about the

power family. Notice that both figures contain BC1 as the base reference.

These two figures suggest that applying suction more slowly leads to better

recovery. Is is likely that the increase in observation data is the reason for

this. This effect is slight in comparison to the large error jump in the BC7

experiment for nearly all coefficient combinations. It appears that there

might be a point at which the identification suddenly become accurate,

and that once beyond this critical point, there is little improvement in the

identification.
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Figure 5.17: Error over Power family

5.7.4 Scaling of the Inversion

We now consider applying the integral identities over increasing smaller

intervals, in an attempt to explore the scaling of the inversion process. Here

we solved both the direct and adjoint constant coefficient problems via

Fourier transform methods in the space variable and considered time to be

continuous. The resulting truncated approximate solution was computed

Maple environment for time intervals ranging from 2−1 to 2−10. Derivatives

were implemented symbolically, and the subsequent log log plots indicate

relative scaling of of the matrix entries. The M11 entries were all negative,

and so the absolute values were used in the log computation. The M22 entry

was difficult to construct via our numeric method. In an effort to admit a

classical solution, a linear function was chosen as data. The Fourier solution

series in space, however, introduced a large variation in the time derivative
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Figure 5.18: Scaling of M11 entry

computation, a term which was required to compute the scaling of the M22

entry. A Laplace solution might lead to a more robust computation, but

this was not pursued.

The manner in which these terms scale can provide interesting infor-

mation about the recovery process. If, for example, the first column entries

were to scale more quickly to zero than the second, this might indicate that

the recovery of C might be more robust that that of K. Similarly, if the

first row were to scale more quickly than than the second, this might lead

one to believe that the state data p contains relatively less information than

does q as the time interval decreases. Here, however, the entries appear to

all scale in an approximately linear fashion, suggesting that the recovery

fails in the case of nodal basis refinement not because of an algorithmic

instability, but rather from numeric limitations.
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Figure 5.19: Scaling of M12 entry
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5.7.5 Scaling of the C coefficient

In this section the relative scaling of C toK is explored for two different

parameter families. We fix K(h) = 1, and allow C to take values from either

C(h) = α or C(h) = α(1 − 1/4h),

where α is chosen from the set {1/100, 1/10, 1, 10, 100}. Often the capacity

function C(h) is assumed to be several orders of magnitude smaller that

that K(h). In this series of experiments we seek to understand the effect

that this might have on recovery. Only the recovery error on the first strip is

recorded, so as to limit the cumulative error effect. Also, this problem was

solved in the Phase 1 setting, by observing the system under drainage for

1 unit to time, and maintaining zero head at the base of the column. The

experimental observations were taken in from the state interval [0 − 0.8].

The variable rate resulted in experiments containing different number of

observations used in the recovery. For example, the choice of α = 1/100

lead to rapid equilibration, and the system reached the state value after

only 6 observation nodes. Conversely, α = 1 required 594 time observations

to reach this same state. For values of α greater than 1, all experimental

observations were used in for recovery. As one might expect, the increase in

nodal information used in the α = 1e + 1 recovery experiment apparently

leads to better coefficient recovery. While not conclusive, this suggests that

there is a slight improvement in recovery as α increases. This effect is small,

on the order of 1e− 5, using the error indicator. This would appear larger

had a norm been used.

A linear family was also explored. In figure 5.22, the relative error

attains a well defined minimum for α in the neighborhood of 1. Again, the
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Figure 5.21: C scale const

scale is quite small in this plot, but the sharp drop between the error at

α = 1e− 2 and α = 1e− 1 is marked. Recall that only 6 observations are

used to compute this update, and therefore this might be attributable to

lack of data. A more interesting feature of this plot is the increase in error

for α larger than 1. In this range, all observation data was used in recovery,

and so the size of the observed data set does not explain this feature. While

not conclusive, this suggests that there is a real and measurable decrease

in recovery as α increases. The error plot suggests that large values of C

relative to K might be more difficult to recover than smaller values of C.

5.8 Recovery from Matlab generated data

In this section, we consider recovery using Matlab generated datasets.

We plot both the true coefficient as well as the recovered coefficient. In the
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Figure 5.22: C scale linear

first series of plots, various unphysical parameters are recovered in an effort

to understand the features that might be changing to recover accurately.

In figure 5.23, K is taken to be 1 and C(h) = 1 − 0.4 sin(h/15). The

non-iterative algorithm was applied. The resulting solution is visually ac-

curate, with the K coefficient approximating the correct constant function

is some integral mean sense. As noted earlier, an increase in the dimen-

sion of the nodal basis leads to a much larger overshoot undershoot effects

then is evidenced in this in this figure of the six dimensional basis. More

difficult coefficients were then attempted. In figure 5.24, the K coefficient

was changed to K(h) = 2 − (|h − 1|/50)(1/5). The nodal basis and C(h)

used in the previous example were preserved. A sample of other coefficient

recoveries are provided in the figures 5.25,5.26 and 5.27. The recovery

apparently becomes more difficult as a function of the gradient in the true

coefficient. If the true coefficient is steep, as it is in figure 5.27, the method
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Figure 5.27: Sample recovery 3

has difficulty. These plots also suggest that recovery in regions which cor-

respond to a increase of the function might prove more challenging than

regions in which the function is decreasing.

5.9 Van Genuchten Family Recovery

Phase 2 numerical suction experiments were conducted over twelve soil

texture classes. The system was initially taken to be at drainage equi-

librium, and linear suction function s(t) = t was applied to the bottom

boundary for 100 units of time. The van Genuchten hydraulic functions

Θ(h) and K(h) were implemented, where

Θ(h) = Θr +
Θs − Θr

[1 + (αh)n]1/n−1
,

which can be rewritten to form the relative saturation Se,

Se(h) =
Θ(h) − Θr

Θs − Θr
,
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which is in turn used to construct the hydraulic conductivity function

K(h) = K0Se(h)
ℓ
{

1 − [1 − Se(h)
n/(n−1)]1−1/n

}2
.

We recall C(h) to be the derivative of Θ(h). Both parameters α and n are

used to control the shape of the curve Θ(h). K0 is the matching point

at saturation, and need not be equal to Ks, the saturated conductivity.

Finally, ℓ is considered to be a measure of soil pore connectivity, and is

normally taken to be 1/2.

The plots (5.28-5.31) demonstrate the recovery of several members the

van Genuchten family. The success of the recovery is variable, ranging from

a numerical failure in the simulation representing sand (5.30), to recovery of

parameters associated with silt (5.31). We also comment that these solution

are dependent on the nodal basis chosen. The appearance of the numerical

instability of overshoot and undershoot was used to tune the nodal basis.

The failure of K(h) in the Clay Loam problem is interesting. The

recovery is visually quite accurate until the third node at h = −30, which

corresponds to the 300th time observation of 1000. The recovery in the

final time strip corresponding to h in the interval [−110− 30] contains 700

observations.

The parameter values used in these experiments were taken from the

documentation of Hydrus, and represent average values. The table entries

for the twelve classes are provided in appendix E for reference.

5.10 Noisy data

Here the ability of the numerical method to perform recovery from

noisy data is explored. Typically, successful parameter estimation becomes
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Figure 5.28: Recovery of coefficients associated with Si C L
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Figure 5.29: Recovery of coefficients associated with C Loam
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Figure 5.30: Recovery of coefficients associated with Sand
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Figure 5.31: Recovery of coefficients associated with Silt
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increasing difficult in the presence of noise. Recall the integral identities

on which the identity method is based. Only an integrated quantity of the

observed data used, which allows much of this noise to cancel. This is a

significant observation, and a highly desirable feature.

Data was generated using the coefficients

C(h) =
1

2
− h

25

(

h

100
+ 1

)

and K(h) =
3

2
+

h

25

(

h

100
+ 1

)

The system was simulated under gravity drainage for 1 unit of time, at

which point suction was applied and the lower boundary pressure linearly

drawn to h = −100 at t = 100. A uniform grid of 8 nodes was used for both

C and K, making these experiments related to those concerning the dimen-

sion of the basis. The observation data was simulated numerically, and then

relative uniform random noise ranging from 1% to 15% was added. This

perturbed data was then submitted to the interactive recovery scheme. The

figure 5.32 represents recovery under 10% noise, and suggests the robustness

of the method.
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Chapter 6

CONCLUSIONS

Adjoint methods are used to construct explicit representations for the

input to output mappings associated with the inverse problem of identifying

unknown coefficients from over specified data measured on the boundary.

The integral equations presented here provide a means for proving that

the input output maps are explicitly invertible. A practical computational

method has been developed and presented. This algorithm was then used

to explore numerous features of the input to output mapping.

The method may be viewed as a tool to gather information about

mapping. Numerical experiments involving the Richards equation suggest

that unknown soil coefficients might be successfully identified via future

refinements of the algorithm, although it might be quite difficult to compete

with sophisticated output least squares methods. Additionally, the integral

identity based algorithm appears to be robust under noise.

A Matlab implementation of the integral identity approach provides a

great deal of explicit information about recovery of the unknown coefficients.

This is viewed as the main contribution of this work. As a result, the

analysis of the recovery process, both successful and unsuccessful, becomes

possible since all components are transparent. Such information is not so
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readily obtained from an output least squares approach nor from equation

error techniques.

The preliminary results of the implementation are highly encouraging.

The adjoint techniques might provide a basis for the successful coefficient

identification methods in the future.

We hope to extend this work in the following directions:

• Application to physical experimental data.

• Examine how the controlled quantities in the physical experiment

impact recovery. It might be possible to determine if one experimental

setting is better than another.

• Implement the alternative cumulative flux method.

• Consider linear and nonlinear scalings of the problem. This might

allow recovery of coefficients exhibiting rapid change.

• Explore the coupling of the water content parameter Θ(t) and hy-

draulic conductivity K. This a current criticism of the van Genuchten

and Brooks Corey methods. The integral identity method does not

utilize a coupling.

• Develop a practical criteria for the adaptive selection of nodal ba-

sis. If possible, this might allow the method to be used as a robust

identification tool, in addition to yielding information in the case of

identification failure.

• Directly compare the integral identity solutions to OLS solutions,

while considering the constraints that are commonly applied in the

OLS setting.
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Appendix A

EXISTENCE UNIQUENESS FOR ONE

PARAMETER

N.B. : The notation used in this section is local

In this section we present a typical existence uniqueness argument for

solutions of the one parameter problem (2.1) under the assumption that

D : R → R is strictly positive and bounded in L∞(R).

It is more convenient to treat the equivalent transformed problem with

homogeneous boundary conditions, and we do so. In the discussion that

follows, a(u) is related but not necessarily equal toD(u), as are the Lipschitz

constants.

We begin by considering the IVBP

∂tu− ∂x(a(u)∂xu) = f(x, t) (x, t) ∈ Ω × (0, T )

u(x, 0) = u0(x) x ∈ Ω (A.1)

u(0, t) = 0 u(1, t) = 0 0 < t < T

where Ω is the open region (0, 1) ∈ R. Assume that a : R → R is in L∞(R)

and that there exist constants C0 and C1 such that 0 < C0 < a(x) ≤ C1 for

all x ∈ R. We begin by establishing some notation: Define

V = H1
0(Ω) ⊂ H ⊂ V ′ = H−1(Ω)

158



and define the bilinear form

a(u, v) =

∫

Ω

a(u)ux · vxdx for u, v ∈ V

Now

|a(u, v)| ≤ C1|
∫

Ω

ux · vxdx| ≤ C1||u||V ||v||V

This estimate implies the existence of a continuous nonlinear map from V

to V ′, given by

〈A(u), v〉V ′×V = a(u, v) for u, v ∈ V,

where

||A(u)||V ′ ≤ C1||u||V

Now let u ∈ L2[0, T : V (Ω)] be a weak solution if it satisfies the problem

(u′(t), v)H + a(u(t), v) = (f(t), v)H for all v ∈ V (A.2)

u(0) = u0

Equivalently, u(t) must be a solution of

u′(t) + A(u(t)) = f(t), u(0) = u0

If f ∈ L2[0, T : H(Ω)] and u0 ∈ H , it can then be shown that there exists

a unique weak solution to the IVBP (A.2). This implies the existence of a

subsequence of solutions converging to a limit which can then be shown to

be a solution for the problem (A.2). Uniqueness follows from the assumption

that a(·) has a strictly positive lower bound.
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Existence: V is compactly embedded in H. There then exists a or-

thonormal basis of H which is also an orthogonal basis for V. Call this

basis {wk}. We can now define a solution

uN(t) =
∞
∑

k=1

ck,N(t)wk for N = 1, 2, 3, ...

which satisfies

(u′N(t), wj)H + a(uN(t), wj) = (fj(t), wj)H for j = 1, 2, ..., N (A.3)

(uN(0) − u0, wj)H = 0 for j = 1, 2, ..., N.

Since the basis is orthonormal, this collapses to a system of odes in the

coefficient cj,N(t),

c′j,N(t) +

N
∑

k=1

ck,N

∫ 1

0

a(uN)∂xwk · ∂xwj = fj(t)

cj,N(0) = −(u0, wj)H .

For fixed N , this system has a unique solution over the time interval [0, TN ],

with TN ≤ T . Energy estimates provide the a priori bounds needed to

complete the argument. All estimates follow from (A.3). Let wj = uN ,

which is possible since (A.3) holds for all j ≤ N , and therefore for uN as

well. Then

d

dt
||uN(t)||2H + C0||uN(t)||2V ≤ 1

C0
||f(t)||2H. (A.4)

Equation (A.4) is the basis for obtaining bounds of both ||uN ||L∞[0,T :H(Ω)]

(discard ||uN ||V term and integrate) and ||uN ||L2[0,T :V (Ω)] (integrate then

throw away ||uN(T )||H term).

||uN ||L∞[0,T :H] ≤ ||u0||2H + ||f(t)||2L2[0,T :H] = M1 (A.5)
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||uN ||L2[0,T :V ] ≤
(

1

C0

)

||u0||2H +

(

1

C0

)2

||f ||2L2[0,T :H] = M2 (A.6)

A bound for u′N in L2[0, T, V ′(Ω)] is also needed. To obtain this bound,

define a projection PN from V → VN . The estimate is due to the fact that

uN is a solution to the weak problem, which implies

〈u′N(t) + A(uN(t)) − g(t), PNV 〉V ′×V = 0 for all v ∈ V,

which can be interpreted as

||u′N(t)||L2[0,T,V ′] = ||P T
N(A(uN(t)) − f(t)||L2[0,T :V ′]

From this, the estimate

||u′N ||L2[0,T :V ′] ≤ C1||uN ||L2[0,T :V ] + ||f ||L2[0,T :V ′] ≤M3 (A.7)

follows.

The estimates (A.5, A.6 and A.7) imply weak convergence of both uN in

L2[0, T : V (Ω)] and u′N in L2[0, T : V ′(Ω)]. In fact, the compact embedding

of V in H implies

uN(t) → u(t) strongly in L2[0, T : H(Ω)]

It remains only to show that u = limN uN is a solution of the original

problem. For this purpose, we define

b(u) =

∫ u

0

a(s)ds

Since a is bounded,

C0|u| ≤ |b(u)| ≤ C1|u| ∀u ∈ R
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It follows from

∂xb(u) = a(u)∂xu

and (A.5) and (A.6) that

||b(uN(·))||L2[0,T :V (Ω)] ≤ C1M1 ∀N

This results implies that

b(uN(·)) → B2 weakly in L2[0, T : V (Ω)]

Since V is compactly embedded in H ,

b(uN (·)) → B2 strongly in L2[0, T : H(Ω)]

Noticing that b(·) is continuous on R and that uN(·) converges strongly to

B2 in L2[0, T : H(Ω)], then b(u) = B2. Now consider

a(u, v) =

∫

Ω

a(u)ux · vx

=

∫

Ω

(b(u))x · vxdx

= (b(u), v)V − (b(u), v)H

Recalling the definition of a(u, v),

∫ T

0

〈A(uN(t), v〉V ′×V dt =

∫ T

0

[(b(uN ), v)V − (b(u), v)H] dt

and then passing to the limit in N

∫ T

0

〈B1, v〉V ′×V =

∫ T

0

[(b(u), v)V − (b(u), v)H ] dt

=

∫ T

0

〈A(u(t), v〉V ′×V dt
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Therefore, A(u(t)) = B1, where B1 is the weak limit of A(uN). Finally,

passing to the limit in the discretized pde (A.3), it follows that u(t) is a

weak solution of the partial differential equation. Now u′(t) can be written

u′(t) = f(t) − A(u(t)), and since f(t) and A(u(t)) are both in L2[0, T :

V ′(Ω)], it follows that u(t) must be in L2[0, T : V (Ω)] ∩ C[0, T : H(Ω)].

Also u(0) = u0, and so u(t) is a solution to the initial value problem.

Uniqueness: Assume that h1 and h2 are two weak solutions of (A.1),

then w = h1 − h2 is a solution of

〈∂tw(t), v〉V ′×V + 〈A(h1) − A(h2), v〉V ′×V = 0 ∀v ∈ V, w(0) = 0 (A.8)

Then

〈A(h1) −A(h2), v〉V ′×V =

∫

U

(b(h1) − b(h2))x · vxdx

= (b(h1) − b(h2), v)V − (b(h1) − b(h2), v)H

Since H is the pivot space between V and V ′, the inner product on H

defines an isomorphism J that associates every v ∈ V with unique element

Jv ∈ V ′. Choosing v ∈ V so that Jv = w, then

(b(h1) − b(h2), v)V = 〈b(h1) − b(h2), Jv〉V ′×V = (b(h1) − b(h2), Jv)H .

Therefore

(b(h1) − b(h2), v)V = (b(h1) − b(h2), w)H,

which is

〈A(h1) −A(h2), v〉V ′×V = (b(h1) − b(h2), w)H − (b(h1) − b(h2), w)H.

Then

〈∂tw(t), v〉V ′×V − (b(h1) − b(h2), w)H = (b(h1) − b(h2), v)H
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and

〈∂tw(t), J−1w〉V ′×V + C0||w||2H ≤ C1

∫

Ω

|w(t)||J−1w(x)|dx

≤ 1

2
C0||w||2H + C2||J−1w(x)||2H.

But

〈∂tw(t), J−1w〉V ′×V = (∂tw(t), w)′V =
1

2

d

dt
||w(t)||2V ′

and

||J−1w(x)||2H = (J−1w(x), J−1w(x))H = (w,w)V ′ .

Then

d

dt
||w(t)2

V ′ ≤ 2C2||w(t)||2V ′ w(0) = 0,

which implies that

||w(t)||V ′ = 0,

and the solution is unique.

Therefore, if

f ∈ C[0, T : H−1(Ω)]

0 < C0 ≤ a(u) ≤ C2 for all u ∈ R

and |a(h1) − a(h2)| ≤ K|h1 − h2|,

then the initial value problem (A.1) has a unique weak solution denoted by

u with the following properties:

u(x, t) ∈ L2[0, T : H1(Ω)] ∩ C[0, T : L2(Ω)] and

∂tu(x, t) ∈ L2[0, T : H−1(Ω)].
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Appendix B

DATA GENERATION

Originally, the PDE (4.2) was made discrete in space using a finite

difference scheme and was integrated in time using explicit methods. This

time integration was quickly switched to implicit methods, in which Mat-

lab’s ODE suite of solvers were used. The goal of this work was to explore

the possibilities of an implementation, rather then focus on the numerical

analysis aspects of the implementation. To this end, the numerical schemes

were chosen for their simplicity to implement, while providing access to

algorithmic detail.

Matlab 6.1 ODE suite allows a large number of time integrators to

be called, all with very similar syntax. The suite includes the solvers:

ODE23, ODE113, ODE15S, ODE23S, ODE23T, ODE23TB , ODE45. All were

tested on a variety of problems, although the stiff solvers (recognized by the

inclusion of an S in their name) seemed to outperform the others for the

selected coefficients.

Matlab was used to numerically generate data sets for recovery. Matlab

scripts were provided with known time dependent coefficient and boundary

data. This information, as well of course the computed values of the corre-

sponding observations in time, were written to a file. The number of data
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points were allowed to vary, as was number of spatial and temporal grid

points.

An small sample data set is provided below.

% Generated on 26-Mar-2004

% using table entry 16

% First row contains D0

% t f g h

1.625 NaN NaN NaN

0.000000 0.000000 -0.000000 0.000000

0.250000 0.250000 0.623279 0.050643

0.500000 0.500000 0.663078 0.202868

0.750000 0.750000 0.555244 0.366781

1.000000 1.000000 0.539687 0.496226

% D{2} = 1-.5*(atan(6*(x-0.5)))

% full table entry = {2,1,ode15s,5,10,[0,0,0,0,0,0]}

Notice that the initial value of the coefficient is provided in the (1, 1)

entry, as is f(t), the forcing at x = 1, and g and h. Also the actual coefficient

D2 = 1 − .5 ∗ (arctan(6 ∗ (x − 0.5))) used in the forward experiment is

included with the data, but the inclusion of the % indicated that this is

a comment, and will invisible in the recovery phase. A call-out table was

used to generate as large number of such data sets, and the actual table

entry is also included and commented.

This method allowed the precision of the data to easily controlled. This

example recorded six significant figures, while other data sets registered

more digits and other registered fewer.

The individual entries in the table entry,

% full table entry = {2,1,ode15s,5,10,[0,0,0,0,0,0]}

166



represent, respectively; the coefficient to be used, the forcing function, the

time integration method, the number of time nodes, number of space nodes,

and an error vector.

The error vector allowed control of perturbation in f(t), g(t) and h(t),

and is grouped in pairs, which are passed as inputs into the following script,

function px = perturb(x,err);

M = length(x);

% err(1) is the random (uniform) error

% err(2) is systematic error in measure

px = x.*( 1 + (rand(M,1)-.5+err(2))*err(1) );

which introduces perturbation.
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Appendix C

MATLAB PSEUDO CODE

Pseudo code is provided for the 2 parameter identification algorithm.

function [C,K] = Coeff_Inverse();

% Try to recover the coefficient C(h)

% in the model C(h) h_t = (K(h)h_z)_z

% given experimental output

[T,P,Q,C0,K0] = load Data.file;

% T = time

% P = h(0,t) ; state at z = 0

% Q = D(h)(h_z-1) @ z=L ; ie flux at z=L

% C0 = C(h(0,0)) ; initial coefficient

% K0 = K(h(0,0)) ; initial coefficient

% Begin Recovery

C = C0; % Initial approximation

K = K0; % Initial approximation

level = 1; % Initial time level

while (max(t) < Tmax)

% Initialize and set problem specs

% includes problem, ic’s, bc’s, methods

forward.info = ...

for strip = level-1:level

[t,h,h_z,h_t,p,q] = solve_forward(forward.info,C,K);
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end

deltap = P-p;

deltaq = Q-q;

% Assign theta (dual data)

theta.one = ???;

theta.two = ???;

% Assign Dual operators

Dual.C = ???;

Dual.K = ???;

% Set problem specs

% includes problem, ic’s, bc’s, methods

dual.info = ...

for strip = level-1:level

[phi,phi_z] = solve_dual(dual.info,Dual);

[psi,psi_z] = solve_dual(dual.info,Dual);

end

for strip = level-1:level

% Construct a 2D region and basis element

[Omega,Lambda] = Active_region(h);

% Construct Matrix M

M(1,1) = Integrate((h_z-1).*phi_z.*Lambda, Omega );

M(1,2) = Integrate(h_t.*phi.*Lambda, Omega );

M(2,1) = Integrate((h_z-1).*psi_z.*Lambda, Omega );

M(2,2) = Integrate(h_t.*psi*Lambda, Omega );

% Construct vector b

b(1) = Integrate(deltap.*theta.one, t );

b(2) = Integrate(deltaq.*theta.two, t );

end

% Compute update

delta = M \ b;

deltaK = delta(1);

deltaC = delta(2);
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% Modify coefficients C and K

C = C + deltaC;

K = K + deltaK;

% Iteration is possible

if (some condition is met)

level = level + 1;

end

end;
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Appendix D

MAPLE CODE

Maple was used to compute fourier solutions to the forward problem

in order to verify numerical methods in Matlab.

#Fourier Series solution to heat equation

# with temp and flux boundary conditiond

#

#u_t = nu u_xx 0<x<L, t> 0:

#u(x,0) = u0(x) 0<x<L:

#u_x(0,t) = theta1(t) u (L,t) = theta2(t) t>0:

restart:

L := 3:

nu := 2:

u0 := x -> 0:

# flux at top (x = 0):

theta1 := t -> 1;

# state at bottom (x = L):

theta2 := t -> 0;

# Eigenvalues

mu := n -> (2*n-1)*Pi/(2*L):

# Shift function to generate homogenous BCs

S := (x,t) -> theta1(t)*(x-L) + theta2(t):

Sp := (x,t) -> diff(S(x,t),t):

Smode := (t,n) -> 2/L*int(S(x,t)*cos(mu(n)*x),x = 0..L):
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Spmode := (t,n) -> 2/L*int(Sp(x,t)*cos(mu(n)*x),x = 0..L):

w0 := n -> 2/L*int((u0(x)-S(x,0))*cos(mu(n)*x),x = 0..L):

solh := (x,t,N) ->

sum(cos(mu(n)*x)*w0(n)*exp(-(nu*mu(n)^2)*t),n=1..N):

solp := (x,t,N) ->

sum(

cos(mu(n)*x) *

int(exp(-(nu*mu(n)^2)*(t-tau))*

Spmode(tau,n),tau = 0 ..t

),n=1..N):

u := (x,t,N) -> solh(x,t,N) + solp(x,t,N) + S(x,t):

ux := (x,t,N) -> diff(u(x,t,N),x):

# Flux at x = L:

g := (t,N) -> nu*(subs(x=L,ux(x,t,N)) - 1):

# state at x = 0:

h := (t,N) -> subs(x=0,u(x,t,N)):

ut := (x,t,N) -> diff(u(x,t,N),t):

# Now make phi dual solution by t -> T- t:

phi := (x,t,N,i) -> u(x,2^(-i)-t,N,i):

phix := (x,t,N,i) -> diff(phi(x,t,N,i),x):

# Now solve psi dual problem:

# Functions for psi dual problem:

psi0 := x -> 0:

t1 := t -> 0: # flux at top (x = 0):

t2 := t -> -t: # state at bottom (x = L):

# Shift function

S1 := (x,t) -> t2(t):

S1p := (x,t) -> diff(S1(x,t),t):

S1mode := (t,n) -> t2(t)*2/L*int(cos(mu(n)*x),x = 0..L):

S1pmode := (t,n) -> diff(t2(t),t) *

2/L*int(cos(mu(n)*x),x = 0..L):
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solp1 := (x,t,N) -> sum(

cos(mu(n)*x) *

int(exp(-(nu*mu(n)^2)*(t-tau)) *

S1pmode(tau,n),tau = 0 ..t

),n=1..N):

psi := (x,t,N) -> solp1(x,t,N) + S1(x,t):

psix := (x,t,N) -> diff(psi(x,t,N),x):

#Now compute rates for enties in matrix

m11 := (i,N) -> (Int(

Int(

(ux(x,t,N)-1)*phix(x,t,N,i)

,x=0..L)

,t=0..2^(-i))):

m21 := (i,N) -> (Int(

Int(

(ux(x,t,N)-1)*psix(x,2^(-i)-t,N)

,t = 0..2^(-i))

,x=0..L)):

m12 := (i,N) -> (Int(

Int(

ut(x,t,N)*phi(x,t,N,i)

,x=0..L)

,t=0..2^(-i))):

m22 := (i,N) -> (Int(

Int(

ut(x,t,N)*psi(x,2^(-i)-t,N)

,x=0..L)

,t=0..2^(-i))):

b1 := (i,N) -> Int(

g(t,N)*(t2(2^(-i)-t))

,t=0..2^(-i)):

b2 := (i,N) -> Int(

h(t,N)*(theta1(2^(-i)-t))

,t=0..2^(-i)):

N := 10:
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M := 5;

for i from 1 to M do:

m1[i] := evalf(m11(i,N)):

m2[i] := evalf(m12(i,N)):

m3[i] := evalf(m21(i,N)):

m4[i] := evalf(m22(i,N)):

B1[i] := evalf(b1(i,N)):

B2[i] := evalf(b2(i,N)):

detM[i] := m1[i]*m4[i]-m2[i]*m3[i]:

TOP1[i] := B1[i]*m4[i] - B2[i]*m2[i]:

TOP2[i]:= m1[i]*B2[i] - m3[i]*B1[i]:

DK[i] := TOP1[i]/detM[i]:

DC[i] := TOP2[i]/detM[i]:

print(m3):

save m1,m2,m3,m4,B1,B2,detM,TOP1,TOP2,DK,DC, "data_maple.m":

od:

m1list := convert([seq(eval(m1[i]),i=1..M)],string):

m2list := convert([seq(eval(m2[i]),i=1..M)],string):

m3list := convert([seq(eval(m3[i]),i=1..M)],string):

m4list := convert([seq(eval(m4[i]),i=1..M)],string):

b1list := convert([seq(eval(B1[i]),i=1..M)],string):

b2list := convert([seq(eval(B2[i]),i=1..M)],string):

detMlist := convert([seq(eval(detM[i]),i=1..M)],string):

T1list := convert([seq(eval(TOP1[i]),i=1..M)],string):

T2list := convert([seq(eval(TOP2[i]),i=1..M)],string):

dClist := convert([seq(eval(DC[i]),i=1..M)],string):

dKlist := convert([seq(eval(DK[i]),i=1..M)],string):

fid:= fopen("jimmy_data_maple.m",WRITE):

fprintf(fid,"%% Generated by MAPLE \n"):

fprintf(fid,"%% computes sequence of integrals \n"):

fprintf(fid,"%% for two parameter estimation \n"):

fprintf(fid,"%% iint = int_0^L int_0^t \n"):

fprintf(fid,"%% int = int_0^t \n"):

fprintf(fid,"%% m11 = iint (h_x-1) phi_x \n"):

fprintf(fid,"%% m21 = iint (h_x-1) psi_x \n"):
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fprintf(fid,"%% m12 = iint h_t phi \n"):

fprintf(fid,"%% m22 = iint h_t psi \n"):

fprintf(fid,"%% b1 = int g t2(t-tau) dtau \n"):

fprintf(fid,"%% b2 = int h theta1(t-tau) dtau \n"):

fprintf(fid,"%% with t = 2^(-i) with i the index \n"):

fprintf(fid," \n"):

fprintf(fid," \n"):

fprintf(fid," m11 = %s ; \n",m1list):

fprintf(fid," m12 = %s ; \n",m2list):

fprintf(fid," m21 = %s ; \n",m3list):

fprintf(fid," m22 = %s ; \n",m4list):

fprintf(fid," \n"):

fprintf(fid," b1 = %s ; \n",b1list):

fprintf(fid," b2 = %s ; \n",b2list):

fprintf(fid," \n"):

fprintf(fid," top1 = %s ; \n",T1list):

fprintf(fid," top2 = %s ; \n",T2list):

fprintf(fid," \n"):

fprintf(fid," detM = %s ; \n",detMlist):

fprintf(fid," \n"):

fprintf(fid," dK = %s ; \n",dKlist):

fprintf(fid," dC = %s ; \n",dClist):

fclose(fid):
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Appendix E

VAN GENUCHTEN PARAMETERS

In this section, a table of van Genuchten parameters is provided for

reference.

The van Genuchten water content function Θ(h) is given by

Θ(h) = Θr +
Θs − Θr

[1 + (αh)n]1/n−1
,

which can be rewritten to represent the relative saturation Se,

Se(h) =
Θ(h) − Θr

Θs − Θr

,

which is in turn used to construct the hydraulic conductivity function

K(h) = K0Se(h)
ℓ
{

1 − [1 − Se(h)
n/(n−1)]1−1/n

}2
.

We recall C(h) to be the derivative of Θ(h).We note that the van Genuchten

formulation couples Θ with K. Here Θr and Θs are the residual and sat-

urated water contents, respectively. Both parameters α and n are used to

control the shape of the curve Θ(h). K0 is the matching point at satura-

tion, and need not be equal to Ks, the saturated conductivity. Finally, ℓ is

considered to be a measure of soil pore connectivity, and is normally taken

to be 1/2. Hydrus allows ℓ to assume negative, unphysical values, as this

practice has been shown to lead to better results.

176



Average Class values for van Genuchten parameters
Class N Θr Θs α n Ks K0 ℓ

cm3/cm3 cm3/cm3 1/cm cm/day cm/day

Clay 84 0.098 0.459 0.015 1.253 14.757 2.965 -1.561
C Loam 140 0.079 0.442 0.016 1.416 8.185 5.000 -0.763
Loam 242 0.061 0.399 0.011 1.472 12.050 3.698 -0.371
L Sand 201 0.049 0.390 0.035 1.746 105.196 24.322 -0.874
Sand 308 0.053 0.375 0.035 3.177 642.688 24.491 -0.930
S Clay 11 0.117 0.385 0.033 1.208 11.350 4.335 -3.665
S C L 87 0.063 0.384 0.021 1.330 13.183 6.934 -1.280
S Loam 476 0.039 0.387 0.027 1.449 38.282 15.488 -0.861
Silt 6 0.050 0.489 0.007 1.679 43.752 3.342 0.624
Si Clay 28 0.111 0.481 0.016 1.321 9.616 3.170 -1.287
Si C L 172 0.090 0.482 0.008 1.521 11.117 2.234 -0.156
Si Loam 330 0.065 0.439 0.005 1.663 18.239 1.750 0.365
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