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history: Darcy

(A. Jose Rosa, Wikimedia Commons)

The father of groundwater science was M.
Henri Darcy. Through experiment, he devel-
oped a constitutive relationship for saturated
flow through an aquifer.

q = −K (ĥ)
(h1 − h0)

(z1 − z0)

The flux q in a soil column is proportional to
the difference in head pressures at two points
in the column divided by the vertical differ-
ence between these two points.
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history: Darcy & Richards

Combining Darcy’s law with the conservation of mass for water content
Θ(h) given by (z = 0 at top)

∂tΘ + ∂zq = 0

yields the equation attributed to Lorenzo Richards in 1931:

∂tΘ(h) − ∂z (K (h) (∂zh − 1)) = 0

or, letting C (h) = ∂hΘ,

C (h)∂th − ∂z (K (h) (∂zh − 1)) = 0

(1d vertical head-based or capacity/conductivity form)
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The Inverse Problem

Goal: Recover approximations of C (h) and K (h) using easily availible
experimental lab data.
A simple (direct) experiment, similar to Darcy’s, could be modeled as :

C (h)∂th − ∂z [K (h)(∂zh − 1)] = 0, 0 < t < T , 0 < z < L

h(z , 0) = 0, 0 < z < L

∂zh(0, t) − 1 = 0 and h(L, t) = s(t) 0 < t < T

This could represent a totally saturated column, driven by (a strictly
decreasing) s(t) at z = L and no flow at z = 0.
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theory: the integral ID

Common inversion techniques include OLS, EEM, and (more recently)
Carleman estimates. The integral based algorithm presented will instead
exploit and adjoint driven integral expression which directly relates changes
in the unknown coefficients to corresponding changes in the measured
output, and which provides clear insight about the inversion.

For suitable of coefficients (C ,K ), the Richards equation has unique
solution h with observable quantities

pressure head at inflow: p(t) = h(0, t) and

flux at outflow: q(t) = K (h(L,T ))(∂zh(L, t) − 1).

Similarly, (C̃ , K̃ ) yields solution h̃ and output (p̃, q̃). In what follows, the
first group will represent the true system and the second an approximation.
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theory: DuChateau

Twenty years ago, DuChateau developed an integral identity well suited to
the recovery of C and K from easily observable output data. The idea
hinges on a duality paring and the solution φ to the adjoint problem

α(z , t)∂tφ+ β∂zzφ+ γ∂zφ = 0 0 < t < T , 0 < z < L

φ(z ,T ) = 0 0 < z < L

β(0, t)φ(0, t) = p∗(t), φ(L, t) = q∗ 0 < t < T

where α = ∆h
∫ h̃
h C (s) ds, β = ∆h

∫ h̃
h K (s) ds, and γ = ∆h

∫ h̃
h K ′(s) ds

and ∆h = h2 − h1.
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theory: Integral Identity

The full identity is∫ τ

0
(∆qq∗ + ∆pp∗) dt

=

∫ τ

0

∫ L

0

[
∆C∂t h̃φ+ ∆K

(
∂z h̃ − 1

)
∂zφ
]
dz dt,

where ∆C = C − C̃ ,∆K = K − K̃ ,∆p = p − p̃, ∆q = q − q̃.
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Dual Data

Notice that the dual appears in a duality pairing with terms of the direct
problem. Setting q∗ ≡ 0 results in the p-identity∫ τ

0
∆pp∗dt

=

∫ τ

0

∫ L

0

[
∆C∂t h̃φp + ∆K

(
∂z h̃ − 1

)
∂zφp

]
dz dt,

and p∗ ≡ 0 in the q-identity∫ τ

0
∆qq∗dt

=

∫ τ

0

∫ L

0

[
∆C∂t h̃φq + ∆K

(
∂z h̃ − 1

)
∂zφq

]
dz dt,

where φp, φq are solutions for the appropriate dual data.
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theory: Linear system

A monotonicity result allows a continuous piecewise linear approximation
of C̃ and K̃ to be recovered a linear system valid over an arbitary region
Ω = (0, τ) × (0, L)

M

[
C̃i − C̃i−1

K̃i − K̃i−1

]
=

[
di−1

ei−1

]
with

M11 =

∫∫
Ω

Λ1(h̃)(∂z h̃ − 1)∂zφp M12 =

∫∫
Ω

Λ1(h̃)∂t h̃φp

M21 =

∫∫
Ω

Λ1(h̃)(∂z h̃ − 1)∂zφq M22 =

∫∫
Ω

Λ1(h̃)∂t h̃φq

d1 =

∫ τ

0
∆qq∗ and e1 =

∫ τ

0
∆pp∗.

where C̃ ≈
∑

i CiΛi and K̃ ≈
∑

i KiΛi .
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numerics: snippet

[T,P,Q,C0,K0] = load Data.file

while (max(t) < Tmax)

for strip = level-1:level

tspan = ????;

[tspan,h,h_z,h_t,p,q] = solve_forward(C,K,...); % FORWARD

dp = P-p; dq = Q-q; % ERROR IN OUTPUT

[phip,phip_z] = solve_dualp(...) % DUAL p

[phiq,phiq_z] = solve_dualq(...) % DUAL q

% CONSTRUCT M and b

[M,b] = make_M(h,h_z,h_t,phip,phip_z,phiq,phiq_z,dp,dq,tspan);

[deltaC,deltaK] = M\b; % COMPUTE COEFFS

C = C + deltaC; K = K + deltaK; % UPDATE COEFFS

% Iterate?

level = level + 1; % MOVE TO NEXT COEFFICIENT INTERVAL

end

end
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numerics: Iteration?
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numerics: Dimension
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numerics: Silty Clay Loam
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numerics: Silt
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numerics: Cumulative flux? (SL)
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numerics: Cumulative flux formulation

Consider the output integral term in q-idenity:∫ T

0
∆qq∗(t)dt

If Q(t) :=
∫ t

0 q(s)dt and Q̃(t) :=
∫ t

0 q̃(s)dt, then

b2 =

∫ T

0
(Q(t) − Q̃(t))Q

′∗(t) dt.

(after integrating by parts and noting that Q(0) − Q̃(0) = 0 and choosing
Q∗(T ) = 0.)
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Conclusions

M is the realization of the discrete (approximate) map.

Easy to understand and interpret!

Useful in recovery

Useful in failure!

Seems natural setting
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