Solutions, Stability, Bounds, and Control? JMM 2017 in Atlanta

Roger Thelwell

James Madison University
January 5, 2017

Outline

(1) A power series approach
(2) Sensitivity
(3) Error
(4) An Aside
(5) Error (again)
(6) Control?
(7) Conclusions
(8) Not polynomial?
$y^{\prime}=\alpha y^{2}$

We'll explore a toy problem...

$$
y^{\prime}=\alpha y^{2} \quad y(0)=y_{0}
$$

$y^{\prime}=\alpha y^{2}$

We'll explore a toy problem...

$$
y^{\prime}=\alpha y^{2} \quad y(0)=y_{0}
$$

An analytic solution to this one is easy:

$$
y(t)=-\frac{y_{0}}{\alpha y_{0} t-1}
$$

$$
y^{\prime}=\alpha y^{2}
$$

What happens if we try (formal, for now) series?
$y^{\prime}=\alpha y^{2}$

What happens if we try (formal, for now) series?
Let

$$
y(t)=\sum_{k=0}^{\infty} y_{k} t^{k}
$$

then

$$
\sum_{k=0}^{\infty}(k+1) y_{k+1} t^{k}=\alpha \sum_{k=0}^{\infty}\left(\sum_{i, j \geq 0}^{i+j=k} y_{i} y_{j}\right) t^{k}
$$

so we equate coefficients to get

$$
y_{k+1}=\frac{\alpha}{k+1} \sum_{i+j=k} y_{i} y_{j}
$$

$y^{\prime}=\alpha y^{2}$

Or, with MAPLE:
> ODE1 := diff(y $(\mathrm{t}), \mathrm{t})=\operatorname{alpha*y(\mathrm {t})^{\wedge }2\text {;}}$
$>$ IC := y(0) = y0;
> y1 := dsolve(\{ODE1,IC\},y(t))
and
> Y1 := dsolve(\{0DE1,IC\},y(t),series); Y1 := 1+2*alpha*t*y0+3*alpha^2*y0^2*t^2+...
$y^{\prime}=\alpha y^{2}$

Given either solution, we see

$$
\partial_{\alpha} y 1=\frac{y_{0}^{2} t}{\left(\alpha y_{0} t-1\right)^{2}}
$$

or

$$
\partial_{y_{0}} Y 1=1+2 \alpha t y_{0}+3 \alpha^{2} y_{0}^{2} t^{2}+\ldots
$$

Computing sensitivity to perturbation in initial condition and/or parameter(s) is easy!

$y^{\prime}=\alpha y^{2}$

What about the error?
> alpha := 1; y0 := 2; plot(abs(Y1-y1),t=0..0.5);

Can we quantify this?
$y^{\prime}=\alpha y^{2}$

What about the error?
> alpha := 1; y0 := 2; plot(abs(Y1-y1),t=0..0.5);

Can we quantify this?
Let's take a little diversion...

$y^{\prime}=\alpha y^{m}$

The solution to the constant coefficient nonlinear IVODE

$$
y^{\prime}=\alpha y^{m} \quad y(0)=y_{0}
$$

is messy:

$$
y(t)=\left((\alpha-\alpha m) t+y_{0}^{1-m}\right)^{-(m-1)^{-1}}
$$

But the ratio of $\frac{y}{y^{\prime}}$ isn't!

$$
\frac{y}{y^{\prime}}=\frac{(\alpha-\alpha m) t+y_{0}^{1-m}}{\alpha}
$$

and so

$$
y^{\prime}(t)=\underbrace{\frac{\alpha}{(\alpha-\alpha m) t+y_{0}^{1-m}}}_{K(t)} y(t)
$$

a non-constant coefficient LINEAR ode.
$y^{\prime}=\alpha y^{m}:$ important aside

So

$$
y^{\prime}(t)=\underbrace{\frac{\alpha}{(\alpha-\alpha t m) t+y_{0}^{1-m}}}_{K(t)} y(t)
$$

has solution

$$
y(t)=y_{0} \exp \left(\int_{0}^{t} K(\tau) d \tau\right)
$$

or, via series,

$$
Y_{k+1}=\frac{\alpha(1+(m-1) k)}{y_{0}^{1-m}(k+1)} Y_{k}
$$

$y^{\prime}=\alpha y^{m}:$ important aside

From

$$
Y_{k+1}=\frac{\alpha(1+(m-1) k)}{y_{0}^{1-m}(k+1)} Y_{k}
$$

and for $m \geq 2$,

$$
Y_{k+1} \leq(m-1)\left|y_{0}\right|^{m-1} Y_{k}:=C_{\infty} Y_{k}
$$

This leads directly to a geometric series bounding $y(t)$:

$$
y(t) \leq \frac{\left|y_{0}\right|}{1-C_{\infty}}=\left|y_{0}\right| \sum_{k=0}\left(C_{\infty} t\right)^{k}
$$

Now for the bound...

$y^{\prime}=\alpha y^{2}:$ back to error

From

$$
y(t) \leq \frac{\left|y_{0}\right|}{1-C_{\infty}}=\left|y_{0}\right| \sum_{k=0}\left(C_{\infty} t\right)^{k}
$$

we see that the absolute error is

$$
|Y 1-y 1| \leq\left|y_{0}\right| \sum_{k=n+1}^{\infty} C_{\infty}|t|^{k} \leq \frac{\left|y_{0}\right| C_{\infty}^{n+1}}{1-C_{\infty}|t|}
$$

where $C_{\infty}=\left|y_{0} \alpha\right|$.
An ERROR bound!

$y^{\prime}=\alpha y^{2}:$ error plots

> ee := abs(Y1-y1);
$>\mathrm{m}:=2$; Cinf $:=\mathrm{y} 0 * a l p h a ;$
$>\mathrm{EE}:=\mathrm{N} \rightarrow \operatorname{abs}(\mathrm{y} 0) *(\operatorname{Cinf} * \mathrm{t})^{\wedge}(\mathrm{N}+1) /(1-\operatorname{Cinf} * a b s(\mathrm{t}))$;
$>\operatorname{plot}(\{e e, E E(5)\}, t=0 . .0 .3)$;
$>\operatorname{plot}(\{e e-E E(5)\}, t=0.0 .2)$;

$y^{\prime}=\alpha y^{2}:$ for control?

Suppose we want to control

$$
y^{\prime}=\alpha y^{2} \quad y(0)=y(0)
$$

so that $y(T)=\beta$.
If we apply frictional damping to the system

$$
y^{\prime}-\alpha y^{2}=u
$$

where $u=k t y^{\prime}$, can we drive the system to the desired state?
$y^{\prime}=\alpha y^{2}:$ for control?

Let's try to drive the system so that $Y(0.2)=3.2$.
$>$ ODE := $\operatorname{diff}(\mathrm{y}(\mathrm{t}), \mathrm{t})=\operatorname{alpha*y}(\mathrm{t})^{\wedge} 2+\mathrm{k} * \mathrm{t} * \operatorname{diff}(\mathrm{y}(\mathrm{t}), \mathrm{t})$;
$>$ IC := y(0) = 2;
> Y := convert(rhs(dsolve(\{0DE1,IC\},y(t),series)),polynom);
> kvals := solve(subs(t=0.2,Y)=3.2);
$-2.051118481+8.300750459 * I,-.6504685102$, ...
> subs(\{k=kvals[2],t=0.2\},Y);
3.200000000
$y^{\prime}=\alpha y^{2}+k t y^{\prime}$
It looks like we can.
> kvals := solve(subs ($\mathrm{t}=0.2, \mathrm{Y}$)=3.2) ;
$-2.051118481+8.300750459 * I,-.6504685102$, ...
$>\operatorname{plot}(\{\mathrm{Yk}(0), \mathrm{Yk}(\mathrm{kvals}[2]), \mathrm{Yk}(\mathrm{kvals}[3])\}, \mathrm{t}=0 . .0 .2)$;

Repeated application allows trajectory control, and our error bound still applies to the forced system!

Conclusions

We considered a toy problem already cast as a polynomial ode. Extension and application of these methods will rely on the use of auxiliary variables to build a system of polynomial IVODEs. Once the system is polynomial, series methods allow remarkably direct analysis.

- Analytic approximation of solution
- Stability and sensitivity
- Easy error BOUND
- Simple control?

These techniques should apply to a broad range of highly nonlinear ODE.

Thank you

Thanks!

Questions? thelwerj@jmu.edu

Thelwell et al.: Cauchy Kowalevski and Polynomial ODE EJDE, 11, 1-8, 2012.

James Sochacki: Polynomial ordinary differential equations Neural Parallel \& Scientific Computations, 18(3-4):441-450, 2010.

$y^{\prime}=\sin (y) ? ? ?$

What now?

What now?
We introduce auxiliary variables to generate a polynomial system.

$$
v_{1}=\sin (y) \quad v_{2}=\cos (y)
$$

$$
\begin{aligned}
y^{\prime} & =v_{1} \\
v_{1}^{\prime} & =v_{2} v_{1} \\
v_{2}^{\prime} & =-v_{1}^{2}
\end{aligned}
$$

All the same ideas apply!

